
CrusDe: A plug-in based simulation framework

for composable Crustal Deformation simulations

using Green’s functions

Diploma Thesis

in partial fulfillment of the requirements for the degree

Diplominformatiker (Dipl.-Inf.)

submitted to the Department of Computer Science

of the Humboldt-University Berlin

by Ronni Grapenthin

born on 09.01.1979

in Jena

Advisors: Prof. Dr. Joachim Fischer, Humboldt-Universität zu Berlin

Dr. Freysteinn Sigmundsson, Nordic Volcanological Center, Reykjav́ık

Date: July 31, 2007

Kurzfassung

Ein bewährtes Werkzeug der Geowissenschaften zur Analyse der Dynamik der Litho-
sphäre in Reaktion auf eine Massenkraft ist die Greensche Methode. Hierbei wird
eine spezielle Lösung einer inhomogenen partiellen Differentialgleichung mit Rand-
bedingungen, die so genannte Greensche Funktion, die vom dynamischen System
abhängt, mit einer in Einheitsmassenimpulsen vorliegenden Auflast gefaltet. Ver-
schiedene Abstraktionen vom Erdinneren und den Effekten, die eine Auflast erzeugt,
können mit Hilfe Greenscher Funktionen formuliert werden. Die Form der Auflast
wird entweder durch ein empirisches oder ein analytisches Modell beschrieben. Alle
Auflastbeschreibungen und Greensche Funktionen könnten innerhalb einer Software-
infrastruktur benutzt werden, wäre die Greensche Methode derart implementiert,
dass sie von der Semantik der Faltungsoperanden abstrahiert.

Die Diplomarbeit untersucht die Möglichkeit, die Greensche Methode so zu
implementieren, dass Realisierungen ihrer Bausteine (Greensche Funktion, Auflast-
funktion, Faltungsoperator) frei komponierbar werden. Hierzu wird die Software-
architektur eines Modell-Simulationsframeworks konzipiert und realisiert. Schnitt-
stellen zur generischen Kommunikation zwischen den einzelnen Modellbausteinen
werden definiert und damit die Austauschbarkeit spezifischer Implementationen er-
möglicht.

Zum Test des entwickelten Plug-in basierten Simulationsframeworks CrusDe1

wird eine Fallstudie durchgeführt. Regionale Deformationsmuster der Erdkruste, die
von den Lavafeldern herrühren, die während des Ausbruchs des isländischen Vulkans
Hekla im Jahr 2000 entstanden, demonstrieren den Nutzen des gewählten Ansatzes
für das Simulationsframework. Probleme wie Nachnutzung von Softwarekompo-
nenten und nutzerbestimmte Komposition von Simulationsmodellen sind in der
vorgeschlagenen Architektur für die spezielle Domäne gelöst.

Die Arbeit liefert für das in der Programmiersprache C++ für Linux-Umgebungen
entwickelte Simulationsframework CrusDe die folgenden Beiträge:

• die Konzeption und Implementation einer parametrisierbaren, durch Plug-ins
erweiterbaren Infrastruktur zur Simulation der Effekte, die beliebige Auflasten
in beliebigen geographischen Regionen auf die Erde ausüben,

• es wird eine unabhängige, nutzerbestimmte Auswahl der Modellbausteine für
die Greenschen Methode ermöglicht,

• die Beschreibung von Simulationen erfolgt durch Experimentdefinitionen in
externen XML-Dateien und

• Tests und Nachweis der Glaubwürdigkeit der Simulationsergebnisse durch Ver-
gleich mit analytischen Lösungen und Resultaten früherer Studien.

1 http://www.grapenthin.org/projects/crusde

ii

Die Simulationsergebnisse der Fallstudie zeigen, dass durch Lavafelder hervorgerufene
Effekte in der Umgebung von Vulkanen bei der Untersuchung von Deformations-
mustern Beachtung finden müssen. Es ergeben sich folgende Erkenntnisse:

• Langzeitabsenkungen durch Auflast weisen Deformationsmuster auf, die den
durch simulierten Druckabfall in Magmakammern hervorgerufenen ähneln; es
kann zu Verwechslungen kommen,

• sollen Eigenschaften einer oberflächennahen Magmakammer ermittelt werden,
müssen die Daten entsprechend der in näherer Umgebung vorhandenen Auflast
korrigiert werden.

iii

Abstract

Within geoscience, Green’s method is an established mathematical tool to analyze
the dynamics of the lithosphere in response to a mass force. A particular solution
for an inhomegenous differential equation with boundary conditions, the so-called
Green’s function, is convolved with a surface load expressed by unit point masses. A
Green’s function depends on the specifics of the examined dynamic system. Different
abstractions from the Earth’s interior and from the effects caused by a load are
expressed by means of Green’s functions. Load shapes are defined by an either
empirical or analytical model. All load and Green’s functions could be utilized
within a single software infrastructure if Green’s method was implemented on a
level that abstracts from the semantics of the convolution operands.

This thesis examines the possibility to implement Green’s method in a way that
realizations of its elements (Green’s function, load function, convolution operator)
are freely composable. A software architecture for a model simulation framework
is proposed and implemented. This architecture defines interfaces for generic com-
munication between the model elements and thus enables exchangeability of specific
implementations.

A case study is conducted to test the developed plug-in based simulation
framework CrusDe2. Regional crustal deformation patterns resulting from the
lava flows that emerged during the year 2000 eruption of the Icelandic volcano Mt.
Hekla demonstrate the usefulness and accuracy of the proposed approach. Problems
such as software component reuse and user-driven simulation model composition are
solved for the specific domain by the proposed architecture.

This work contributes the following to the development of CrusDe which is written
for Linux environments in the programming languages C/C++:

• conception and implementation of a plug-in based infrastructure for modeling
the surface displacements due to arbitrary loads in any region of the Earth,

• independent, user-driven selection of elements participating in Green’s method,

• description of simulations in experiment definitions in external XML-files, and

• tests and proof of credibility by comparisons to analytical solutions and to the
results of previous studies.

The model results of the case study show that surface loads cause consider-
able deformation around volcanoes and thus must be considered when deformation
patterns in such areas are studied. The following conclusions are drawn:

• long term subsidence due to surface loads shows a deformation pattern similar
to pressure decrease in shallow magma chambers; a mix-up is possible,

• if the characteristics of a shallow magma chamber are to be derived, the data
must be adjusted to the effects caused by surface loads in the vicinity.

2 http://www.grapenthin.org/projects/crusde

iv

Contents

List of Figures viii

Listings ix

List of Tables x

List of Abbreviations xi

1 Introduction 1

1.1 Motivation & scientific context . 1

1.2 Objectives and contribution . 3

1.3 Structure of this thesis . 5

2 Modeling and simulation 6

2.1 Disambiguation . 7

2.2 Simulation model paradigms . 9

2.3 Computer simulation and problem solution 10

2.4 The composable simulation model . 11

2.5 Verification, validation, and testing 17

2.6 Summary . 19

3 Examining the deformation of the Earth’s crust 21

3.1 System description & conceptual model 22

3.2 The Earth’s inner structure . 24

3.3 The lithosphere from a signal processing point of view 27

3.4 Green’s functions as a load response function 29

3.5 Applying Green’s method: formal models for surface displacement . . 31

3.5.1 Elastic half-space . 32

3.5.2 Thick plate over an inviscid fluid 33

3.6 Performance enhancement: fast convolution 35

3.6.1 Theoretical background . 35

3.6.2 Convolving a Green’s function and a load fast 39

3.7 Summary . 41

v

Contents

4 The composable simulation model: A plug-in based simulation
framework 42

4.1 Specification of the simulation framework 43

4.2 Architecture . 47

4.3 Implementation . 51

4.3.1 Selected plug-ins . 52

4.3.2 Plug-ins in Unix environments 55

4.3.3 Experiment files . 56

4.4 Runtime scenarios . 57

4.4.1 UML sequence diagrams . 58

4.4.2 Plug-in communication sequence 58

4.4.3 Initialization sequence . 59

4.4.4 Execution sequence . 62

4.5 Testing and validation . 64

4.6 Evaluation of the plug-in based simulation framework 68

4.7 Summary . 70

5 Case study: The Hekla 2000 lava 71

5.1 Introduction . 71

5.2 The study site: Experiment definition 74

5.3 Model results . 75

5.3.1 Instantaneous and final relaxed deformation due to the Hekla
2000 lava . 75

5.3.2 Modeling a magma chamber: The Mogi model 78

5.3.3 Response of a deflating magma chamber vs. final relaxed re-
sponse to a disk load . 79

5.4 Discussion & conclusions . 80

5.5 Summary . 83

6 Summary, conclusions & outlook 84

Bibliography 89

A Symbols 93

B Contents of the CD 95

C Installation and simulation 96

D Sample experiment & use cases 97

D.1 Experiment definition . 97

D.2 Using the plug-in manager . 99

D.3 Using the experiment manager . 100

vi

Contents

E Implementation details 102
E.1 Interfaces of the simulation framework 102

E.1.1 Needed interfaces . 102
E.1.2 Provided interfaces: Framework API 105

E.2 Implemented plug-ins: details . 106
E.2.1 Convolution operator: ‘fast 2d convolution’ 106
E.2.2 Green’s functions . 110
E.2.3 Load functions and load history functions 111
E.2.4 Postprocessors . 112
E.2.5 Result handler . 113

E.3 Implementing a new plug-in . 114

Index 115

vii

List of Figures

2.1 Classification of simulation model paradigms 9
2.2 Scheme to solve a simulation problem 11
2.3 A simulation model reuse spectrum 14

3.1 Conceptual model of the Earth-load-system 23
3.2 The Earth’s inner structure . 26
3.3 Section through oceanic crust and tectonics of south-eastern Germany 27
3.4 Block diagram of a filter . 28
3.5 Green’s function for the response to an unit point mass 31
3.6 DFT example . 38
3.7 Green’s method block diagram . 40

4.1 Logical data flow between software components of the simulation
framework . 45

4.2 Architecture of the plug-in based simulation framework 49
4.3 CrusDe plug-in communication sequence 59
4.4 CrusDe initialization sequence . 60
4.5 CrusDe execution sequence . 63
4.6 Simulated response of an elastic half-space to a disk load 66

5.1 Map of Iceland . 72
5.2 Interferogram showing subsidence at Hekla between 1993 and 1997 . . 73
5.3 Map of the preliminary Hekla 2000 lava 74
5.4 Simulated instantaneous and final relaxed response to the Hekla 2000

lava . 77
5.5 Comparison between simulated deformation due to a Mogi source and

a disk load . 81

D.1 Screenshot plug-in manager GUI . 100
D.2 Screenshot experiment manager GUI 101

viii

Listings

5.1 Experiment definition: Irregular load on a thick plate (Hekla 2000) . 76
5.2 Experiment definition (excerpt): Disk load 78
D.1 Experiment definition: Disk load w/ load history on elastic half space 98
E.1 CrusDe API . 107
E.2 Example of a fast convolution using FFTW 109

ix

List of Tables

4.1 Comparison of CrusDe’s simulation results for the elastic response
under the center of a disc load to a reference implementation and an
analytical solution . 66

5.1 Characteristics of the Hekla 2000 lava flows 75

x

List of Abbreviations

API application programming interface

COARDS Cooperative Ocean/Atmosphere Research Data Service

DB Database

DFT discrete Fourier transform

DTD Document Type Definition

GPL GNU General Public License

GPS Global Positioning System

GUI Graphical User Interface

IF interface

InSAR interferometric synthetic aperture radar

KISS keep it small and simple

FFT fast Fourier transform

FFTW Fastest Fourier Transform in the West

I/O input/output

LSI-system linear space invariant system

MB mega byte

PSF plug-in based simulation framework

RAM random access memory

SAR synthetic aperture radar

SI-system Système international d’unités

UML Unified Modeling Language

XML Extensible Markup Language

xi

1 Introduction

“Programming is legitimate and

necessary academic endeavor.”

(Donald E. Knuth)

1.1 Motivation & scientific context

Modeling and simulation play an important role in gaining a better understanding of

processes that work hidden from the human eye in the interior of the Earth. Acquired

data that might reveal the driving forces of our observations is usually punctual in

either space, or time, or both. A Global Positioning System (GPS) receiver, for

instance, might calculate its position at an arbitrarily high frequency, but it measures

the movements of a single point only. Satellite imagery, on the other hand, provides

a high spatial resolution of the Earth’s surface, but observations are only repeated

on the order of days or weeks. Furthermore, a multitude of (interacting) processes

usually causes anomalies in geo-data. In words of Oreskes et al. (1994), geo-data

are “inference-laden signifiers of natural phenomena to which we have incomplete

access.”

Modeling and simulation – carefully applied – provide helpful means to fill data

gaps. With the help of mathematical expressions results are obtained that fit the

recorded data and are continuous over time and space. These expressions represent

a simplified reality and yet, the identification of processes that contribute to a signal

might be possible. Thus, modeling and simulation may support theories which in

turn help to explain observations.

In the discipline of crustal deformation which is concerned with responses of

1

1 Introduction

the Earth’s crust to endogen (e.g. magmatic) and exogen (e.g. glacial) processes,

Green’s method is a frequently used mathematical tool for analyzing the dynamics

of the Earth’s crust in response to mass forces (surface loads). In this method a

particular solution of an inhomogeneous partial differential equation, the so-called

Green’s function, is convolved with a mass force that acts on the crust. This surface

load is suspected to induce the observed effect on the Earth’s surface. Since Green’s

functions that represent a simplified understanding of the Earth’s inner structure

can be constructed, they are used to mimic loading related effects. The result of

Green’s method is an estimate for the response of the Earth in a specified region to

the applied force. Such a result could be, for instance, uplift due to glacial melting

(with the surface load being a glacier).

Availability of models, not only in the form of mathematical formulations but

also as executable software, gets more important the more scientific findings rely on

them. This is also true for the Earth and surface load models that are employed in

Green’s method. Analytical solutions for this method are obtainable – if at all – only

with great effort. As soon as numerical methods are used to compute a result it is

important to provide the applied methods; especially as source code. Not only that

programming errors are identified more quickly this way, but effortless reproduction

of results and questioning of applied methods allow for fertile discussions about the

findings and thus improve inferred theories.

Software infrastructures that allow for composition of simulation models and

support external configuration of a particular simulation support the exchange of

both simulation models and experiment descriptions between modelers. This is

because simulation models are to be implemented as separate software components

that can be transferred physically between simulators.

However, the initial preparation of such infrastructures demands an effort

which dilutes later advantages and thus might as well be avoided in favor of quickly

obtained results for the particular problem at hand. This is especially reasonable

in the case of Green’s method since it is a mere convolution which consists of only

a few loop-statements in source code. This might explain the fact that so far no

2

1 Introduction

such infrastructure seems to exist for Green’s method although its inherent modular

structure highly favors composability.

The situation the author focuses is different in the way that the objective from

the very beginning is to implement two different Green’s functions. Both are to be

convolved with identical mass forces since a comparison of simulation results is aimed

at. Thus, the perspective of two almost identical source code bases gave rise to the

motivation to provide a software infrastructure that implements Green’s method in

a way that allows for external composition of the convolutions participants (Green’s

function, load function, and convolution operator).

1.2 Objectives and contribution

The main objective of this thesis is the development of a simulation framework

which implements Green’s method to study crustal loading effects, especially crustal

deformation. Application scenarios of such a framework include the simulation of

effects such as surface displacements, strain changes, and gravity changes of the

Earth induced by any kind of surface load which could be a water reservoir, a

glacier, as well as a lava flow. Comparable studies were recently conducted by, e.g.,

Pinel et al. (2007), Grapenthin et al. (2006), Ófeigsson et al. (2006), and Barletta

et al. (2006) to name but a few. The general approach for finding a solution to any

of the above scenarios would either be a novel implementation of Green’s method or

the alteration of existing source code which involves much redundant programming

and testing.

To avoid these redundancies the developed simulation framework should sup-

port user-driven simulation model composition and simulation parameterization; at

best by providing an infrastructure that enables the exchange of simulation models

and experiment definitions between the users.

A part of this thesis is a case study that utilizes the developed simulation

framework to demonstrate its applicability to questions regarding crustal deforma-

tion. The response of the Earth’s crust to the lava of the year 2000 eruption of the

3

1 Introduction

Icelandic volcano Mt. Hekla is simulated to achieve this objective.

Primarily the utilization of the Green’s functions derived by Pinel et al. (2007)

is aspired. The thesis uses these functions as published; their accuracy1 is relied

on. An in-depth discussion on the underlying theoretical details it not provided

within this thesis; in doubt the original publication and references therein must be

consulted.

The priority of the implementation of a composable Green’s method is to allow

for a steep learning curve2. The intention of this is to encourage modelers to imple-

ment newly derived formal models based on Green’s method in a way compatible

with the simulation framework developed here and furthermore their release to the

public. Therefore, simulation models must be simple to compose and extensions

to the framework should be acceptable in at least the programming language C;

FORTRAN should be an additional option since both are widely used in the geo-

sciences. Furthermore, the simulation framework should be easy to install with few

or no requirements to its runtime environment.

From the above objectives of the thesis the demands on this work are evi-

dent and only briefly summarized in the following. Ranking first are studies on the

means to transform phenomena of the real world into an executable and extend-

able simulation framework, as well as closely related concepts such as composition,

reuse, and validation and verification of models. This follows the study of Green’s

method as used by Pinel et al. (2007). The general concept of this mathematical

tool must be understood and set into a relation to the examined system, the Earth-

load-system. Additionally the underlying theories must be looked at to identify an

efficient algorithm for implementation. Finally, the simulation framework and nec-

essary additional elements are to be implemented and applied to conduct the case

study.

1 This refers especially to the fact that no proof or validation of the semantics of these functions
is given here.

2 Here, a learning curve is understood following its original meaning which expresses
a functional relationship between the duration of learning and the resulting progress
(http://en.wikipedia.org/wiki/Learning curve, 23.05.07). Hence, a steep learning curve
displays much progress during the initial stages of learning something new.

4

1 Introduction

1.3 Structure of this thesis

After the general introduction to the topic of the thesis in this chapter, chapter 2

gives an introduction to simulation and modeling science. Concepts that guide the

development process of the simulation framework through the remainder of this the-

sis are presented. The idea of a composable simulation model, as well as the terms

verification, validation and testing are investigated in detail. Chapter 3 introduces

the system that is to be examined in depth and explains theoretical backgrounds

necessary to transform the observed system into a mathematical formulation. Chap-

ter 4 forms the bulk of this thesis and describes the architecture and implementation

of the simulation framework that is realized within this work. The case study that is

conducted in chapter 5 demonstrates the applicability of the simulation framework

as an aid in scientific work regarding crustal deformation studies. The thesis closes

with concluding remarks and an outlook in chapter 6.

The appendices provide information supplementary to the main text. Ap-

pendix A serves as a reference to the symbols used in equations in the thesis.

Appendix B presents and describes the directory structure of the enclosed CD.

The installation of the simulation framework and how simulations are to be invoked

is described in appendix C. A sample experiment and therewith the use cases of

the simulation framework are detailed in appendix D. The extensive appendix E

contains implementation details on the interfaces of the simulation framework and

on the implemented plug-ins. Furthermore, some instructions on implementation

and compilation of new plug-ins are given.

Lists of figures, listings, and tables are given directly after the table of

contents to aid the quick look up of the respective contents. All abbreviations

used in this thesis are explained before chapter 1.

5

2 Modeling and simulation

“The best material model of a cat is an-

other, or preferably the same, cat.”

(Norbert Wiener)

A general introduction to modeling and simulation science is given in this chapter.

Terms fundamental to this area and of importance to the general understanding of

this thesis are defined in section 2.1. A common classification of simulation model

paradigms is given in section 2.2. The subsequent section 2.3 introduces a sequence

of techniques which support solving general simulation problems. This sequence is

expanded by the author so that specifics of the problem at hand are accounted for.

The several stages of this sequence are followed in a step-wise manner in chapters 3

and 4 to achieve the objectives of this work (see section 1.2). Two stages of this

sequence, composable simulation models and model validation and verification, de-

serve closer attention. The concept of composable simulation models is discussed in

section 2.4 since this concept proves to be valuable with regard to this works objec-

tives. Thus, the necessary software engineering background and terminology must

be introduced. Furthermore, advantages are presented that motivate this concepts

application and reflect its value. A brief debate on the meaning of model validation

and verification in section 2.5 clarifies how these techniques are to be understood

and what they express with regard to a model.

6

2 Modeling and simulation

2.1 Disambiguation

Due to its inherently interdisciplinary nature the terminology used in modeling and

simulation science varies slightly throughout the literature depending on applica-

tion, author, and language. For instance, a computer program that represents a

simplified view on a part of the reality might be referred to as model (e.g., Pidd

(2002)), computer simulation (Fujimoto, 2000), or simulation model (Fischer and

Ahrens , 1996). This section introduces definitions of fundamental terms as a basis

for a consistent nomenclature within this thesis. The set of definitions given here is

complemented subsequently throughout the rest of this thesis.

Following a materialistic concept of the world, Fischer and Ahrens (1996) see

the reality as a collection of phenomena denoting perceived appearances. At the very

beginning of the modeling process such collections are described and structured in

a process that abstracts from the single entity. Phenomena which by definition hold

specific characteristics are categorized. The emerging groups are entitled umbrella

terms. In this object-oriented approach each group is referred to as model class .

A model1 in its most common meaning is an abstraction from reality. Ranging

from simple drawings to complex mathematical descriptions, models are analogies to

phenomena of the objective reality and their interactions. Hence, modeling describes

the process of obtaining an abstraction from reality. The literature (e.g., Fischer

and Ahrens (1996)) contains different specializations of this general understanding

of models depending on, e.g., application and level of abstraction. A simulation2

model , for instance, is an abstraction from a phenomenon specifically designed to

be experimented with (other specializations are introduced in section 2.3). The

allowance for a systematic change of parameters which supports the acquisition of

knowledge about the behavior of a modeled phenomenon is usually a design criterion

leading to a simulation model.

A system is a phenomenon that Fischer and Ahrens (1996) expect to possess

three characteristics:

1 modellus, diminutive of modulus (Latin): small measure
2 simulare, (Latin): imitate

7

2 Modeling and simulation

• It must have a purpose an observer can identify.

• The phenomenon is a composition of other mutually related phenomena,

so-called system elements, which define its functionality with regard to the

purpose.

• The phenomenon is non-divisible: its purpose is altered or unrealizable if a

part is extracted from the system.

The computational realization of a simulation model is referred to as simula-

tor . In terms of Zeigler et al. (2000), “a simulator is any computation system [. . .]

capable of executing a model to generate its behavior.” This is not limited to a com-

puter in the technological sense. Due to its ability to perform thought experiments,

the human mind is a good example for such a model behavior generating system.

An important principle in software engineering is the ‘keep it small and sim-

ple’ (KISS) principle which propagates a modularized design; meaning that complex

software applications are constructed from simpler parts. The plug-in concept real-

ized by a software application is one possible implementation of the KISS principle

in which software parts3 of an application can be added, replaced, or removed by the

user (Mayer et al., 2003). The plug-in concept can be extended as far as creating

a program that obtains all of its functionality from plug-ins and their interaction.

Such a program would merely implement a management mechanism to provides an

infrastructure for, e.g., the plug-in communication.

A simulation framework can be thought of as an implementation of the KISS

principle since it provides and connects building blocks of a simulation model. A

simulation framework providing a plug-in mechanism is a possible realization of the

composable simulation model concept which enables user-driven simulation model

composition. A detailed description is given in section 2.4.

3 The meaning of ‘software parts’ is intentionally this vague at this point. It is sufficient to get
a general understanding of the term ‘plug-in’. However, a detailed discussion about the nature
of these software parts is given in sections 2.4 and 4.1.

8

2 Modeling and simulation

2.2 Simulation model paradigms

In modeling exists a number of different approaches to obtain an abstract represen-

tation of the original system in the form of a simulation model. These paradigms

can be classified depending on the characteristics of a simulation model that seem

most significant. Possible classifications of simulation models include time treatment

(e.g., real-time or static4), or the way simulator states change as simulation time5

advances.

Figure 2.1 shows a classification proposed by Fujimoto (2000) with regard to

state changes. The most general classification of simulation models is as continuous

and discrete. If the state of a system is considered to change continuously over time,

simulation models that utilize differential equations with regard to simulation time

describe such systems in continuous simulation models. Weather simulation models

are a popular example of this paradigm. In discrete simulation models the original

system is thought of as changing states only at discrete points in simulation time. If

the original system can be described this way, the advantage to continuous models

are consistent snapshots of the models state variables at each point in simulation

time. Fujimoto (2000) describes the view on such a system as “jumping from one

state to the next, much like moving from one frame to another in a cartoon strip.”

If these jumps in simulation time are always of equal size, the simulation model is

referred to as time-stepped . However, systems exist that cannot be realized using

a time-stepped simulation model since state changes in simulation time might, for

4 Static modeling refers to obtaining only an end result, i.e. no time treatment is included.
5 Simulation time is an abstraction to simulate the time of the original system in the simulation

model(Fujimoto, 2000).

simulation model

discrete continuous

event driven time-stepped

Figure 2.1: Classification of simulation model paradigms (Fujimoto (2000), changed)

9

2 Modeling and simulation

instance, occur in a randomized way. When such a system is modeled, the smallest

necessary time interval between two distinct system states might be unknown which

requires the selection of the smallest possible step size to advance in simulation time.

In this case time-stepped modeling leads to high frequency re-calculation of values

that did not change at all. To avoid this overhead and (re-)calculate states only

when something ‘interesting’ had happened, the concept of event driven simulation

models evolved. In these models an event is referred to as a point in simulation time

at which an instantaneous action of the original system is simulated.

The classification described above allows to draw conclusions regarding the

method state variables are calculated. Later, this will aid the specification of the

simulation framework and give insights into its design. Other classifications, e.g.,

classification of simulation models with regard to their time treatment, are not

beneficial to this work since the key concepts of the system examined here are

cannot be expressed in an adequate manner.

2.3 Computer simulation and problem solution

The stages of a computer simulation process which includes model development and

implementation are identified by Fischer and Ahrens (1996); depicted in the scheme

of figure 2.2. The different identified stages will aid the derivation of a composable

simulation model in chapters 3 and 4 to achieve the objectives of this thesis.

In the beginning of the modeling process observation of the original system

leads to a conceptual model . Here, the essence of a systems functionality, i.e. the

system elements (model classes) and their relations, is represented in an informal,

usually graphical manner. This helps to define the systems boundaries. The analysis

objective, i.e. the question that is supposed to be answered with this model, must

be formulated at this stage. The next step involves further specification which could

be done, for instance, in either a rather declarative or a rather functional way.

A declarative model depicts either state changes or events within the system. A

functional model , however, presents the system as a black box and relates a particular

10

2 Modeling and simulation

input to the respective output. This stage, though possibly depicting functional

relations, is still located on an informal level. Analysis of this informal model and

its translation into formulae lead eventually to a formal model ; a mathematical

representation of the system aligned to the analysis objective.

2.4 The composable simulation model

The focus of this work lies with the transition from the formal model to executable

software for experimentation. Therefore, the stage of the composable simulation

model in figure 2.2 is depicted in greater detail than originally intended by Fischer

and Ahrens (1996).

In chapter 3 it will be shown that the characteristics of the formal model for the

system examined within this work allow for decomposition into several simulation

models. Figure 2.2 shows that an infrastructure must be provided in the form of

real phenomenon
as original system

conceptual system
model

informal
model

formal
model

model
results

analysis objective

observation
deduction/
induction

mathematical
fomalization

experiments

better
system
understanding

validation

evaluation

simulator

parameter modification

validation
programming

simulation
frameworkcompiling

software
components compilingcomposition /

loading

simulation
models

composable
simulation modelcomposition/

compilation

provide
infrastructure

programming

testing

Figure 2.2: Scheme for solving a simulation problem using composable simulation models. See text (sections 2.3 to
2.5) for detailed explanations. (adapted from Fischer and Ahrens (1996))

11

2 Modeling and simulation

a simulation framework which assures the organization of the simulation models in

the way specified by the formal model. However, before the composable simulation

model can be precisely defined and discussed, the key element to composability –

the software component – deserves a little more attention.

Böhme (2007) lists three characteristics a system element needs to possess to

be considered as component :

• Composability: A component is a building block of a system and therewith a

part of a whole.

• Dependency on context: The context in which the term ‘component’ is used

defines criteria to distinguish a component from the rest of a system.

• Component purpose: Much like considering a phenomenon as a system requires

the phenomenon to allow for identification of its functionality (see section 2.1),

a component is a subsystem with a self-contained functionality.

Adding claims about structure and behavior to the above characteristics, Böhme

(2007) defines software components as templates which define an initial state and a

potential behavior of software component instances in their physical representation

as binary code (e.g., a dynamic (software) library6). A software component instance

is a realization of a software component; it possesses a state and a behavior. In-

terfaces that describe the interaction of the software component instance with the

rest of the software system are defined by the software component. Thus, a soft-

ware component is much like a blueprint in engineering. It describes in detail how

things are supposed to work, starting from an initial state. However, it is not able to

execute any activity itself which is left to a realization of the blueprint – in engineer-

ing a physical workpiece, in software engineering the software component instance.

Böhme (2007) suggests to avoid context-free usage of the term ‘component’ due to

6 In computer science a library is a collection of subroutines. If loaded into an application at
runtime, the library that contains the subroutines is called dynamic library; it remains as
a separate file on the hard disk. The opposite of a dynamic library is a static library. Its
subroutines are physically included (copied) into the application at compile time.

12

2 Modeling and simulation

the significant semantic differences depending on the particular domain in which the

term is used.

To realize software component instances the simulator needs to provide a spe-

cial infrastructure which shall be referred to as simulation framework and should

support the following functionality (Böhme, 2007):

• registration of software components (announcing the software components to

the simulation framework),

• instantiation of software component instances from registered software compo-

nents (create a copy of the template in memory which allows for representation

of state and behavior of the very instance),

• composition of software component instances (binding of all interfaces), and

• interaction of the software component instances (communication via their in-

terfaces).

Knowing what role software components play and what functionality a simula-

tion framework must support, we can go back to figure 2.2 and detail the introduction

to this section.

The formal model defines the context and therewith the criteria to distinguish

the subsystems. As depicted in figure 2.2 the subsystems that are identified in the

formal model are implemented as simulation models and then compiled into soft-

ware components. The infrastructure that must be provided and thus the design of

a particular simulation framework depends on the each of the simulation models, as

well as their interaction as specified by the formal model. The binary representa-

tion of the simulation framework on the simulator (i.e., the programmed computer

used to run a simulation) is responsible to load the software components. Further-

more, it must compose the created software component instances in a way that their

interaction emulates the functionality of the formal model.

13

2 Modeling and simulation

From this follows the definition for the composable simulation model:

Definition 1. A composable simulation model is an abstraction from a phe-

nomenom which can be divided into subsystems that are implemented as simulation

models. It provides an infrastructure that allows for registration of software compo-

nents (the binary representation of the simulation models), as well as instantiation,

composition, and interaction of software component instances which represent the

phenomenons subsystems in software. The composable simulation model is specifi-

cally designed to be experimented with. Thus, the infrastructure must provide further

functionality for parameterization of the software component instances.

The advantage gained from the efforts that are apparently necessary to realize

a composable simulation model is software reuse on an advanced level. According

to a definition by Pidd (2002), software reuse includes the “isolation, selection, and

utilization of existing software parts” in the development of new software. Figure 2.3

shows an incomplete spectrum of reuse types which affect diverse kinds of software

parts. They can be applied to reduce efforts that go into implementation and testing

when software is written from scratch.

Full (composable)
simulation model reuse

Function
reuse

Copy ’n’
paste

Frequency:

Complexity:

low

lowhigh

high

Software com-
ponent reuse

Figure 2.3: A (incomplete) software reuse spectrum. Since object-oriented concepts are usually not familiar in areas
outside computer science concepts like class reuse, class collection reuse, and others which might, e.g.,
be located between function and software component reuse, are not included in this spectrum. (Pidd
(2002), changed)

The overall message of figure 2.3 is that reuse frequency is inversely correlated

to software complexity. Furthermore, it is implied that with complexity the level of

abstraction raises. Source code fragments are certainly less abstract than concepts

for composable simulation models as suggested by the definition above. Possible

types of software reuse are described as follows (incomplete):

14

2 Modeling and simulation

• Copy ’n’ paste is the most common technique. Relatively small segments of

code, usually slightly modified, are reused. Trust in the original programmer

might be necessary, but is not crucial. The code is of a size manageable for

reading and testing before reuse. Such segments often provide a good code

basis for new projects.

• Function reuse includes, e.g., built-in functions of a programming language.

Usually the purpose of the functions is quite specific which enables for simple

tests to build up trust.

• Software component reuse describes the utilization of software components that

offer functionality through interfaces to, e.g., third-party software. Both, com-

plexity and necessary testing depend on the offered functionality, e.g. number

of interfaces.

• Full (composable) simulation model reuse in the sense of using a complete

(composable) simulation model as part of another, more complex (composable)

simulation model has been the driving force for many developments in the

simulation world (e.g. HLA7). However, problems to realize this type of reuse

are manifold (e.g., how to deal with the fact that a model is designed having

one specific objective in mind) (Paul and Taylor , 2002; Overstreet et al., 2002).

Types of reuse not included in the spectrum are mainly from the field of object-

oriented modeling and design and include concepts like class reuse and class collec-

tion reuse which might be located between function and software component reuse

in figure 2.3. However, object-oriented concepts are usually not familiar to users

of areas outside of computer science. Following one of the objectives of this work,

independent extention of the proposed simulation framework shall be encouraged.

This cannot be achieved if the world of object-oriented programming must be un-

locked first. For this reason the presented spectrum of possible reuse scenarios spans

concepts that are familiar to other disciplines or at least easy to grasp.

7 High Level Architecture: for distributed simulations; desires to support universal and uniform
interoperability (communication) of simulation models (e.g., Pidd (2002)).

15

2 Modeling and simulation

The prospect of software component reuse or even full simulation model reuse

made composable simulation models a vividly researched area in simulation and

modeling science. Apart from the definition given here (see definition 1), several

definitions for this term exist. They differ mainly in terms of the flexibility software

components must provide to make up a composable simulation model. Kasputis

and Ng (2000), for instance, propose in their position paper “. . . a [software] system

with which simulations are created at runtime to meet the specific requirements of

that run. The user specifies his needs to a system that in real time builds a simula-

tion [model] . . . ” Page and Opper (1999), however, show that deciding whether an

arbitrary collection of software components meets specified model requirements is

NP-complete8. A more detailed discussion about issues regarding such a proposition

is given by Overstreet et al. (2002). Apart from “automated solutions being com-

putational intractable”, the authors mention challenges in a reuse-enabling-design

of composable simulation models and difficulties with the decision about whether

existing models satisfy certain objectives. Overstreet et al. (2002) identify the cap-

turing of objectives, assumptions, and constraints of simulation models as a key to

their reuse.

Another definition for composable simulation models that being more software

developer oriented is given by Winnel and Ladbrook (2003):

“[A] Composable Simulation [Model] involves the selection of a series

of existing modeling constructs, bringing them together in such a way

as to model the real world situation at hand, in much the same way

as existing modeling methodologies – but with much of the underlying

coding already carried out.”

Though closer to being realizable and pointing into the direction of concepts

included in the comprehension of a composable simulation model, Winnel and Lad-

brook (2003) still remain quite vague in their definition. Nothing is said about the

8 NP-complete problems are the most difficult problems in complexity the-
ory; they are to be computed in non-deterministic polynomial time (NP)
(http://en.wikipedia.org/wiki/NP complete, 19.07.07)

16

2 Modeling and simulation

nature of the modeling constructs which, as shown in figure 2.3, could be just about

anything. Furthermore, it remains unclear how the ‘constructs’ might be brought

together and which parts of the software are affected by the coding that is already

carried out. The definition of this thesis (see definition 1) is clear about these con-

cerns and thus reflects the comprehension of composable simulation models in this

work.

Although quite vague in their definition, Winnel and Ladbrook (2003) give a

good overview of the benefits gained from the use of composable simulation models.

They list, for instance, time saving due to lower system complexity and therewith

money benefits, and quality benefits which come with the reuse of software compo-

nents that are already tested and validated. Overstreet et al. (2002), however, imply

that building a (composable) simulation model entirely from tested, validated, and

accredited software components does not say much about the validity9 of this newly

composed simulation model. Thus, a certain effort must be made to validate this

new simulation model.

Adding to the discussion that fully automated composition might be possible

at best in very restricted domains with certain design criteria in mind, Overstreet

et al. (2002) propose that providing tools for modelers’ assistance is a more realistic

goal. A calling that is taken up as an objective of this thesis in chapter 4 where

an architecture enabling for composition of simulation models on a developer and

modeler level is introduced.

2.5 Verification, validation, and testing

Once the composable simulation model is programmed it can be transformed into an

executable program. This program and the computer it is installed on are the sim-

ulator which now can be used to obtain model results by performing experiments10

However, figure 2.2 suggests this is not the final stage in the process of solving a

9 see section 2.5 for a discussion about validity
10 An experiment is understood as an instance of a (composable) simulation model using a specified

set of parameter values.

17

2 Modeling and simulation

simulation problem. Yet, nothing indicates that the model results can be trusted at

all. Even if results ‘appear’ to be correct, this might be due to errors that cancel

each other out depending on the test conditions.

To describe how much a model can be trusted two terms are widely used in

modeling and simulation science:

• verification11, and

• validation12.

Both are applied in greatly varying situations; often erroneous (Oreskes et al., 1994).

Thus, an effort must be made to clarify both their meaning and their area of appli-

cation. Oreskes et al. (1994) provide an insightful analysis of the philosophical basis

of the two terms.

Following the argumentation of Oreskes et al. (1994), verification refers to an

establishment of truth which makes it inapplicable to any model of natural (or other

open13) systems. The problem starts with the observed data which are “inference-

laden signifiers of natural phenomena to which we have incomplete access.” (Oreskes

et al., 1994). Thus, even data to which model results are compared are not necessar-

ily a ‘truth’ with respect to the analysis objective. Furthermore, models of natural

systems are non-unique. Several models that abstract differently from reality might

fit the same observed data which is a contradiction to the term ‘verification’. The

term ‘software verification’, however, refers to a discipline in software engineering

which is concerned with the assurance that a software satisfies all defined require-

ments. Certainly this must be done as soon as the simulator produces model results

to assure the results conform to the formal model. Yet, to avoid any terminological

confusion this process is referred to as testing (see figure 2.2).

As for validation, Oreskes et al. (1994) state that this term is often misused

11 from verus (Latin): true
12 from validus (Latin): strong, effective; later: ‘supported by facts or authority’
13 In an open system the system elements can be influenced by elements outside of the examined

system. Usually these influences are included in the model as assumptions which might not
hold for any new study (Oreskes et al., 1994).

18

2 Modeling and simulation

interchangeably with ‘verification’ or even in the sense of a valid model being an

accurate representation of reality. The literal meaning, however, refers to the estab-

lishment of legitimacy. Oreskes et al. (1994) translate this to a model being valid if it

“does not contain known or detectable flaws and is internally consistent.” Over the

years more fine-grained concepts of ’validity’ emerged in simulation and modeling

science to allow for several ‘stages’ of confidence in the reliability of model results.

Concepts of model validity include (weakest to strongest, stronger validity implies

the weaker) (Fischer and Ahrens , 1996; Zeigler et al., 2000):

• Application validity, proves that the model satisfies the analysis objective.

• Empirical validity, exists if, for all feasible experiments, the behavior of model

and system agree within acceptable tolerance.

• Behavior validity, is gained if the model can predict yet unseen system behav-

ior. The model is set to an initial state corresponding to the systems state.

• Structural validity, is affirmed if the model mimics in a step-by-step, element-

by-element fashion the systems transitions.

To decide about a models validity the results should be evaluated by comparing

them to the behavior of the real system. However, if no data from the original

system are available, the results of several simulator experiments are to be compared

among one another, or, as done in section 4.5, to results obtained from reference

implementations. Furthermore, simple analytical solutions, i.e. results calculated

directly by using mathematical methods (Fischer and Ahrens , 1996) could be used

to show model correctness. At each step it might be necessary to go back as far as

the observational stage in the modeling process to improve the model.

2.6 Summary

A solid foundation in both terminology and modeling concepts for this thesis was

laid. Depending on the original authors, some differences in use and application of

19

2 Modeling and simulation

terms exist in this field. An effort was made to agree on a terminology consistent

within this thesis. Introduced modeling paradigms are used in later chapters to aid

positioning the implemented simulation framework in the modeling world.

A sequence of technologies that applies to the process of solving an arbitrary

simulation problem defines a road map through the following chapters. A refinement

of that sequence allowed for the inclusion of composable simulation models which

is the key concept to this work. The given definition for the term ‘composable

simulation model’ outlines the efforts that must be made in the following chapters

to realize this concept. The discussion about reuse strategies showed how the extra

effort that goes into providing an infrastructure for the use of software components

can ease future extentions of the (composable) simulation model. Finally, it is

concluded that the models of concern to this work –models of natural systems–

cannot be verified at all. To gain confidence in both, the software implementation

and the models, thorough testing and a strong validity relation must be exerted.

20

3 Examining the deformation of

the Earth’s crust

“By relating the observed flexure or bending of the

lithosphere to known surface loads, we can deduce

the elastic properties and thicknesses of plates.”

(Turcotte & Schubert)

Now that chapter 2 provided a setting in which arbitrary simulation problems can

be solved, this chapter can introduce the system that is to be modeled and sim-

ulated. Theories necessary to solve the modeling problem at hand are presented.

The sections are organized in a way that follows the steps suggested in figure 2.2 up

to the point of deriving a formal load model. Additional background information

is provided along the way to allow for comprehensible transformation between the

different stages.

At first the physical problem and the analysis objectives are presented ac-

companied by the conceptual model in section 3.1. A general introduction to the

Earth’s structure and parts of its behavior is given in section 3.2. This gives a ‘feel-

ing’ about the complexities and problems that may arise when it comes to simulate

the behavior of this key part of the modeled system. In order to proceed applying

the techniques outlined in figure 2.2 the author changes the perspective on the sys-

tem to that of signal processing. This discipline provides several useful tools that

are applied to derive an informal model for the original system in section 3.3. Sec-

tion 3.4 is concerned with the introduction of the theoretical background essential

for the formulation of two formal models that express the surface displacements of

21

3 Examining the deformation of the Earth’s crust

the Earth due to loading which is done in section 3.5. The formal models that are

derived in section 3.5 are formulae that generally can be implemented in two ways

since they are based on the convolution operation. In section 3.6 a technique is

presented that allows an efficient implementation of the formal models. In order to

apply this technique correctly in the following chapter, its theoretical background

is given and prerequisites that must be fulfilled are presented. This technique will

serve as a blueprint to the implementation of the composable simulation model in

the following chapter.

3.1 System description & conceptual model

The system examined in this thesis is concerned with the deformation of the Earth’s

surface in response to changes of the superimposed load and thus is referred to as

Earth-load-system. Examples for load variations are changes in atmospheric pres-

sure, melting of a glacier, emplacement of a lava flow, or various combinations of

different mass forces that act on the Earth’s surface. Mostly untraceable for the

human eye, a means to measure the Earth’s surface deformation is the Global Po-

sitioning System (GPS). Generally speaking, receivers on the ground calculate the

changes of a points position by relating it to known positions of satellites.

Three system elements make up the Earth-load-system:

• a load is a body that applies a mass force to the surface it rests on,

• the Earth is a body which shows deformation at its surface in response to

changes in the applied mass force, and

• a load history expresses the changes of a mass force over time, e.g., alternation

between extrema.

Considering the definition of a system as given in section 2.1, it is obvious that

extracting one of the above system elements from the Earth-load-system would make

22

3 Examining the deformation of the Earth’s crust

Load
history

Displacement

max

min
Load /

mass force Earth’s
surface

Figure 3.1: Conceptual model of the Earth-load-system. The load (solid black rectangle) is applied to the pointed
black line which represents the initial state of the Earth’s surface. The Earth responds to the mass
force (little black arrows) with surface displacement, changing its state to the one denoted by the solid
black line. The load, however, may vary over time which is denoted by a load history. At first it might
raise to a maximum level which results in maximum displacement and then it could drop to a minimum
represented by the dashed gray lines that limit or extend the load box. Depending on the load history,
the displacement might alternate between the upper and the lower dashed, gray surface lines, linked to
minimum and maximum load, respectively.

its purpose – to show a surface displacement due to a load change – unrealizable1.

Figure 3.1 shows a possible conceptual model of the system.

The main objective when examining an Earth-load-system as depicted in fig-

ure 3.1 is the determination of the effects the mass force has on the body it is applied

to. Such loading effects are not limited to surface displacements which this thesis

focuses on. Examination of gravity variations or geocenter displacements (van Dam

et al., 2002) might also be of interest; all of which are referred to as loading prob-

lems . The analysis objective of the Earth-load-system is to find a solution for one

particular loading problem; either as quantitative estimation of anticipated effects

to a load change, or –when fit to real observations, e.g., GPS data– to infer knowl-

edge about a system element (known as inverse problem). An inverse problem with

regard to the Earth-load-system could be the derivation of deeper knowledge about

the Earth’s structure by fitting modeled surface displacements to those observed at

GPS-stations (e.g., Grapenthin et al. (2006)).

When modeling the Earth-load-system it can be expressed as an aggregation

of models for the following system elements:

• Earth model: a mathematical model that expresses geometrical considerations,

and mechanical properties of the Earth,

1 In this work static models are assumed to have a load history of step size 1 with the initial
minimum load being zero. At step 1 the maximum load is applied to the Earth’s surface. Thus,
the load history cannot be extracted from the system.

23

3 Examining the deformation of the Earth’s crust

• load model: either a mathematical model describing the extention and com-

position of a load, or data from load observations, and

• load history model: either a mathematical model describing the temporal evo-

lution of a load or times series from observations (real, probably processed

data).

Since a multitude of abstractions exists to express any of these elements in formulae,

each is considered a model class . Although the Earth is spherical, mathematical

expressions which describe it as a flat Earth approximation are considerably easier

to handle. Thus, when modeling small segments of the Earth its spherical nature

could be neglected. This results in simpler mathematical formulations which, as a

downside, might add to the uncertainties of the model results. The load model class

could contain data points describing the real extension of a load, or geometrical

approximations of the load geometry such as disks, lines, or points. Each of these

approximations is considered an instance of an Earth or load model, respectively.

Modeling the Earth-load-system as an aggregation of model classes provides

the basis for composition of model class instances on the implementation level (in

the form of simulation models) as shown in figure 2.2 and detailed in section 2.4.

The remainder of this chapter focuses on the derivation of two exemplary Earth

models as well as the formal method that connects them to load models. Since the

scope of this thesis is mainly to provide a simulation framework that makes any of the

models that form the Earth-load-system exchangeable, the complexity of exemplary

load and load history models is kept to a minimum. Explicit models for these are

derived in chapter 4 and appendix E.2.

3.2 The Earth’s inner structure

Before suitable models for the Earth can be introduced, an overview of the com-

plexity of the Earth’s inner structure should be given, because it accounts for the

multitude of models that can be derived to approximate the Earth.

24

3 Examining the deformation of the Earth’s crust

The Earth is basically composed of three distinct shells. The core with a radius

of about 3500 km consists of a solid inner and a liquid outer core and is enclosed

by the mantle. The outermost shell is the thin crust; of all shells the least dense.

Figure 3.2 shows estimated thickness and location of each shell, and illustrates the

subdivision of the mantle.

The uppermost part of the mantle begins at a depth that depends on the

thickness of the overlying crust. In areas of ocean basins this is at about 0− 10 km

depth. Whereas, beneath huge mountain ranges the crust gains thicknesses of up to

80 km, e.g., in the area of the Andes or the Himalayas. The transition from crust to

mantle marks a significant discontinuity in travel time of seismic waves2. The crust

and the upper part of the mantle form the lithosphere3. Rocks of the lithosphere be-

have rigidly and are sufficiently cool to not deform on time scales less than 109 years

(Turcotte and Schubert , 2002). The 1600 K isotherm4 marks the transition between

lithosphere and asthenosphere5. The depth of this isotherm ranges from 100 km

depth beneath the oceans to about 200 km depth beneath continental plates. Rocks

of the asthenosphere are sufficiently hot to deform on short time scales. Beneath

370 km depth lies a transition zone in which density steadily increases until at about

720 km depth the even denser inner mantle begins.

To studies of crustal deformation the behavior of the lithosphere which is

fragmented in tectonic plates is of major interest. Due to its rigidity the lithosphere

bends when a load is applied to its surface. Examples for such loads are, e.g.,

atmosphere, glaciers, or volcanoes. Around the Hawaiian Islands, for instance, the

bending of the lithosphere due to the Islands’ load results in a region of greater

water depth than farther from the islands (Watts , 2001).

The upper half of the lithosphere does not return to its initial state on time

scales of 109 years. This part is identified as the elastic lithosphere. The lower and

2 The so-called Moho or Mohorovičić-discontinuity
3 lithos (Greek): stone + sphere (Greek): globe, ball
4 surface of constant temperature given in Kelvin [K]
5 a + sthenos (Greek): without strength, rigidity

25

3 Examining the deformation of the Earth’s crust

Figure 3.2: The Earth’s inner structure as understood today (Press and Siever , 1978)

hotter part, referred to as the thermal lithosphere, bends when a load is applied,

but relaxes on significantly shorter time scales than the elastic lithosphere (Turcotte

and Schubert , 2002).

Depending on genesis and scale, the structure of the lithosphere can be of

great complexity. Figure 3.3(a) shows a schematic section through oceanic crust.

It is made of four distinct layers each having different physical properties. The

tectonics of south-eastern Germany illustrated in Figure 3.3(b) give an example

of the complexity lithospheric structure gains after several cycles of orogeny6 and

leveling over the course of about 570 million years. These examples are supposed

to underline the necessity of a certain degree of abstraction in modeling crustal

deformation over broader regions. It is simply impossible and unnecessary to capture

the exact geology of a region in a model to conceive the processes that account for

particular observations.

6 oro (Greek): mountain + genesis (Greek): origin, creation, generation

26

3 Examining the deformation of the Earth’s crust

Figure 3.3: Schematic sections through the crust at two distinct parts of the Earth. Both depict about 6-8 km of
depth. (a) Section through typical oceanic crust which consists of a good number of horizontal layers with
different physical properties. (Francis and Oppenheimer , 2004) (b) Tectonics of south-eastern Germany
showing folds which result from orogenesis. The result is breakup of the homogeneous horizontal layers
that now even have vertical boundaries with layers formerly resting on top or below. Thus, the physical
properties of such structures do not only depend on the sequence of the layers and their properties but
also in the way they are folded. The circular labels mark distinct topographic features that are of interest
in the original publication. (Wagenbreth and Steiner , 1990)

3.3 The lithosphere from a signal processing

point of view

Section 3.2 gave an impression about the complexity of the lithosphere which implies

that a variety of informal models can evolve depending on abstraction level and

perspective on the lithosphere. To transform any of the potential informal models

into mathematical expressions assistance of analogies to well-studied systems which

are backed up by a sound theory is useful. An analogy for the lithosphere developed

by, e.g., Watts (2001) is that of a filter (see figure 3.4). This analogy enables the

27

3 Examining the deformation of the Earth’s crust

application of tools of filter theory to loading problems. However, before this analogy

can be explained a general introduction to filters must be given.

A filter in its most common meaning, i.e. an element linking an input to an

output (Watts , 2001), is shown in the block diagram of figure 3.4. Amplitude and

phase of an input signal are weighted by a filter depending on the position in the

spectrum before they are read out. The term spectrum7 refers to a representation of

a signal which depends on the frequencies of the signals constituents (e.g., Meffert

and Hochmuth (2004)). Meffert and Hochmuth (2004) define a signal as a space-

time-object being tied to a physical carrier whose parameter variations in time and

space may contain information. For instance, a glaciers mass over a specific area

with the parameters volume and density can be referred to as a signal.

Filterf gx,y x,y

Input Output

Load Lithosphere Surface displacement

Figure 3.4: Block diagram of a filter with fx,y , gx,y denoting discrete two-dimensional signals (value sequences) for
input and output, respectively. The input is linked to an output depending on the characteristics of the
filter. The most simple form of a filter is the all-pass which passes the input unchanged (e.g., a mere
wire). Other filters pass only parts of the inputs frequency content. Assuming the lithosphere is a filter,
its input is a load and its response is surface displacement on the output side occurs (displacement of
the lithosphere, i.e. the filter, itself). The exact displacement is determined by the characteristics of the
lithosphere. The simulated displacements depend on the chosen informal model for the lithosphere. In
general, the lithosphere shows the characteristics of a low-pass filter. This means the output signal is
smoother than the input (see text for details) (Watts (2001), changed).

Among other properties, filters can be distinguished by their spectral char-

acteristics. A low-pass filter passes frequencies below a specific frequency, whereas

higher frequencies are eliminated. The output signal, also called response (function),

appears smoother for it contains fewer inflection points since high frequency parts

are eliminated. Other filter types with analog definitions are all-pass, high-pass,

band-pass, and band-elimination filters.

Coming back to the analogy for the lithosphere, Watts (2001) states it can be

attributed as filter, because a load is linked to a surface displacement depending on

7 “apparition, specter”, spectrum, (Latin): appearance, image, apparition

28

3 Examining the deformation of the Earth’s crust

the characteristics of the lithosphere. With displacements extending into areas not

covered by the load, it can be understood that short wavelength displacements are

suppressed, e.g., wavelengths smaller than the dimensions of the load. However, long

wavelength displacements associated with flexure are passed. According to Watts

(2001) this behavior is related to the strength of the lithosphere. By responding

with displacements as described here, the lithosphere behaves like a low-pass filter.

A special kind of filter is a linear space-invariant (LSI) filter. If the lithosphere

responds to loads h1, h2 with surface displacements f1, f2, respectively, and a load

a h1+b h2 produces a surface displacement a f1+b f2, the lithosphere is a linear filter.

The arbitrary constants a and b are mere amplification factors. Space-invariance

entitles a filter whose response does not depend on the inputs position. If a load

h1 at point (x, y) causes surface displacement f1 at (x, y), then f1 occurs at point

(x+ r, y + s) when h1 is shifted to (x+ r, y + s) for any values r and s. An approach

to limit the complexity of crustal deformation studies is to assume the lithosphere

is a LSI-filter (e.g., Watts (2001)). Its behavior is well known and includes (e.g.,

Meffert and Hochmuth (2004)):

• The principle of superposition is true (this comes along with linearity).

• The output contains only frequencies that are already existent in the input.

• A harmonic input has a harmonic output of the same frequency.

The following section introduces the mathematical background necessary to

convert an informal model for the lithosphere to a formal model. The particular

informal models for the lithosphere that are used as a basis in this thesis and their

respective mathematical representations are presented in section 3.5.

3.4 Green’s functions as a load response function

In his 1828 Essay on the Application of Mathematical Analysis to the Theories of

Electricity and Magnetism George Green, the English mathematician and physicist,

derived a powerful tool which is now called a Green’s function. In general, such

29

3 Examining the deformation of the Earth’s crust

a function represents a particular solution to an inhomogeneous partial differential

equation with boundary conditions. With the background on linear filters given in

section 3.3, Green’s functions can also be described as a linear filters response to a

delta function which can be imagined as a force acting on a very small entity, i.e. a

short time (unit impulse), or a point (unit point mass) (see section 3.5). Since the

lithosphere is assumed to be a linear filter (see section 3.3) Green’s functions can be

applied to solve, e.g., surface displacement problems due to loading.

Challis and Sheard (2003) describe the concept of a Green’s function based

on an unit impulse acting on a particle and its displacement. Adapted to loading

problems of the lithosphere, the dynamics of a point ~r (cylindrical coordinates) on

the Earth’s surface that responds to an unit point mass with a displacement are

considered (see figure 3.5). Applying an unit point mass L(~r′) to point ~r′ results

in a displacement U(~r′) at ~r′. The displacement at ~r is determined by the Green’s

function G(~r, ~r′). A real load L, however, covers an area instead of a point. It can

be represented as a grid of unit point masses acting at (ideally) equidistant points

on the lithosphere. Integration over the load covered area R subsumes the effects

each unit point mass has on point ~r:

U(~r) =

∫
R

G(~r − ~r′)L(~r′)dS (3.1)

Having in mind that unit point masses can be zero in R, equation 3.1 im-

plies that geometries of loads are not restricted to any shape. The approach of

equation 3.1 is referred to as Green’s method (e.g., Thornton and Marion (2003)).

As Challis and Sheard (2003) point out: “a Green function depends on the

dynamical system but not on the form of the applied force.” In the case of loading

problems the applied force is a loads mass. The dynamical system, however, is the

lithosphere for which several conceptual models exist (see section 3.2 and section 3.5).

Deducing these conceptual models to LSI-filters results in a number of informal

models for the lithosphere. To describe a particular model in mathematical terms,

a Green’s function must be derived for each one of those. Detailed descriptions on

how a particular Green’s function is derived are given by, e.g., Snieder (2004).

30

3 Examining the deformation of the Earth’s crust

r

r’

L(r’)

G(r,r’)
U(r’)

v
h

Figure 3.5: Green’s function for the response to an unit point mass. The displacement in point r due to a load L(r′)
that is applied at r′ is expressed by the Green’s function G(r,r’). Since real data, e.g. from GPS stations,
comes with displacements split into spatial directions, instead of calculating the total displacement it
might be useful to find separate Green’s functions for horizontal h and vertical v displacements. This
is furthermore necessary since Green’s functions are solutions to partial differential equations. The gray
arrows represent a load model that is an array composed of many unit point masses, each having an
impact on r. Utilizing Green’s method (equation 3.1) and thus convolving the load with a Green’s
function, the impact of all unit point masses that compose the load is attributed to the displacement at
r.

3.5 Applying Green’s method: formal models for

surface displacement

Green’s method (equation 3.1) provides a general frame to calculate the response

of a dynamical system to an applied force. To apply this method to the calculation

of surface displacements the integrands of equation 3.1 must be defined accordingly.

The case is simple for the unit point mass as it is the product of the loads density,

ρ, and and its height, h, at a point ~r′:

L(~r′) = ρ(~r′)h(~r′) (3.2)

As implied in section 3.4 the respective Green’s functions for the lithosphere

are more complex to derive which is therefore not done here. In the following two

candidate formal models for end-member cases of the lithospheric response to a load

as derived by Pinel et al. (2007) are presented:

• the instantaneous response, the lithosphere is assumed to be an elastic half-

space, and

• the final relaxed response, the lithosphere is assumed to be a thick elastic plate

lying over an inviscid (see section 3.5.2) fluid.

31

3 Examining the deformation of the Earth’s crust

Both informal models neglect the spherical nature of the Earth. Thus, caution is

demanded when interpreting results in great distance from the load. When com-

paring a flat Earth approximation to a more realistic, spherical model of the Earth,

Grapenthin et al. (2006) found that results agree quite good within a radius of 150 km

around the loads center. The vertical instantaneous response of the flat Earth model

agrees to within 1% in amplitude to the result obtained from the spherical model.

For the instantaneous horizontal displacement, however, a difference in results of up

to 10% is obtained.

The reference state before loading is the lithostatic stress field, i.e. pressure

comes from the weight of the overlying rock. As defined by Pinel et al. (2007) the

vertical axis (z) is always directed downwards. Hence, loading induces positive ver-

tical displacement. Negative vertical displacement, however, is related to unloading.

3.5.1 Elastic half-space

A (three dimensional) half-space is limited in one spatial direction and ranges from

positive to negative infinity in the other two directions, i.e.: z ≥ 0, −∞ < x < ∞,

and −∞ < y < ∞. Elastic material deforms when a force, e.g. a load, is applied.

Once this force is removed the material returns to its initial state. To a certain

extend all rocks behave elastically at low temperatures as long as the applied forces

are not too large. In that case rock might deform plastically (i.e., not return to its

initial state) or fracture.

To calculate the instantaneous or initial response of the lithosphere Pinel et al.

(2007) use an informal model in which the lithosphere is a linear and space-invariant

elastic half-space and derive Green’s functions for vertical, Gv(r), and horizontal

displacement, Gh(r):

Gv(r) =
g

π

(1− ν2)

E

1

r
(3.3)

Gh(r) = − g

2π

(1 + ν)(1− 2ν)

E

1

r
(3.4)

Elastic parameters characterizing the lithosphere are the Poisson’s ratio, ν, and

32

3 Examining the deformation of the Earth’s crust

the effective Young’s modulus , E. The former is a constant determining the com-

pressibility of a material. It ranges from 0.0 to 0.5, where 0.5 describes a perfectly

incompressible material. A common value for the lithosphere used in the literature

is ν = 0.25. The effective Young’s modulus describes the force necessary to deform

a composite material. Thus, it is a measure of a materials average stiffness. Typical

values for the lithosphere range from 10 GPa to 130 GPa.

Using Green’s method (equation 3.1) with a load as defined in equation 3.2,

and equations 3.3 and 3.4 as Green’s functions, the surface displacement at point ~r

is given by:

Uv(~r) =

∫
R

Gv(~r − ~r′)ρ(~r′)h(~r′)dS~r′ (3.5)

Uh(~r) =

∫
R

Gh(~r − ~r′)ρ(~r′)h(~r′)d~S~r′ (3.6)

where Uv(~r) and Uh(~r) are, respectively, vertical and horizontal displacement, dS(~r′)

is the area around the point ~r′, and R is the area of the load. Vectorial integration,

i.e. the vectorial sum of the integrals in the two horizontal directions, is represented

by d~S~r′. Arbitrarily shaped loads within R are created (e.g.) by setting h = 0 at

points ~r′ that do not belong to a load.

3.5.2 Thick plate over an inviscid fluid

To model the fully relaxed response (or final state) of the lithosphere after a load

is applied Pinel et al. (2007) use an elastic layer of arbitrary thickness H which lies

over an inviscid fluid of density ρf . Inviscid describes a material whose viscosity is

neglected. Hence, fluid friction has no effect on the results. The fluid is assumed to be

in equilibrium. The method is described in depth by Pinel et al. (2007). Therefore,

only the Green’s functions are given here. Vertical, GH
v (r), and horizontal, GH

h (r),

displacements at the surface (z = 0) are expressed by:

33

3 Examining the deformation of the Earth’s crust

GH
v (r) = Gv(r) +

(1− ν2)g

Eπ

∫ ∞

0

(
B

D
− 1)J0(εr)dε (3.7)

GH
h (r) = Gh(r) +

g

2πE(1− 2ν)

∫ ∞

0

[
(1− ν2)(2ε

A

D
+ 4ν)

]
J1(εr)dε (3.8)

where J0 and J1 are Bessel functions of the first kind of zeroth- and first-order,

respectively. The coefficients A, B, and D are defined by:

A = ε2H2 − ν(cosh(2εH)− 1)− 2(1− ν2)

E
gρf (ν

sinh(2εH)

ε
+ H) (3.9)

B =
1

2
ε sinh(2εH) + ε2H2 +

1− ν2

E
gρf (cosh(2εH)− 1) (3.10)

D = −ε3H2 +
1

2
ε(cosh(2εH)− 1) +

1− ν2

E
gρf (sinh(2εH) + 2εH) (3.11)

where ε is the variable of integration. If H →∞, then A
D
→ −2ν

ε
and A

D
→ 1 which

gives the solution of the elastic half-space of equations 3.3 and 3.4.

The displacements due to loading (see equation 3.2) are given by:

UH
v (~r) =

∫
R

GH
v (~r − ~r′)ρ(~r′)h(~r′)dS~r′ (3.12)

UH
h (~r) =

∫
R

GH
h (~r − ~r′)ρ(~r′)h(~r′)d~S~r′ (3.13)

where UH
v and UH

h are, respectively, vertical and horizontal displacement depending

on plate thickness H.

Linking this section to the guiding figure 2.2, two informal models for the

lithosphere, the elastic half-space and the thick plate over an inviscid fluid have

been introduced. The analogy between the lithosphere and a filter as described

in section 3.3 was utilized to transform the informal models into mathematical ex-

pressions for the system introduced in section 3.1. Green’s method as introduced

in section 3.4 represents the systems formal model. The identified subsystems are

expressed by the load function and the Green’s function within Green’s method.

34

3 Examining the deformation of the Earth’s crust

Mathematical expressions for both are given in this section. These can be utilized

to infer the response of the lithosphere to a load.

3.6 Performance enhancement: fast convolution

The operation introduced in equation 3.1 (Green’s method) defines the so-called

two-dimensional (linear) convolution; an important tool for analyzing linear filters.

To mark the convolutions character of an operator the double-asterisk notation is

used (Meffert and Hochmuth, 2004):

U(~r) =

∫
R

G(~r − ~r′)L(~r′)dS

= G ∗ ∗L (3.14)

A convolution is generally a computational expensive operation with demands in

terms of time and memory that increase exponentially depending on signal size which

is obvious from equation 3.1. This section will introduce a technique that is called

fast convolution which under certain circumstances significantly decreases the time

necessary to obtain the result of a convolution. Therefore, section 3.6.1 introduces

the theory and circumstances under which a detour is possible that enables a faster

convolution. The fast convolution itself is presented in section 3.6.2.

3.6.1 Theoretical background

Since unit point mass sequences are discrete signals by nature, equation 3.14 can be

written as (for the sake of readability in Cartesian coordinates):

Ux,y =
Rx−1∑
x1=0

Ry−1∑
y1=0

Gx−x1,y−y1Lx,y (3.15)

where the load area, R, has width Rx and length Ry. The generalized definition

of a convolution, however, allows for infinite functions. Thus, the bounds of the

sums would range from −∞ to ∞. It is obvious from equation 3.15 that in terms

35

3 Examining the deformation of the Earth’s crust

of number of multiplications and additions a discrete convolution is an expensive

operation. With L being composed of N unit mass points the complexity8 is O(N2).

The amount of arithmetical operations can be reduced to O(N log N) when

the convolution is performed in the spectral domain; an approach called fast con-

volution. Before the steps to achieve this performance improvement are explained

(section 3.6.2), two fundamental tools must be introduced:

• the discrete Fourier transform (DFT), and

• the convolution theorem.

For the sake of simplicity, but without loss of generality, this is done for one-

dimensional signals only. Given information is reduced to a minimum necessary

for this thesis. An in-depth presentation of these subjects is found in the literature

(e.g., Stearns and Hush (1999), Meffert and Hochmuth (2004)).

Discrete Fourier transform (DFT) In section 3.3 a spectrum was defined as a

representation of a signal depending on the frequencies of its constituents. One func-

tion pair for transforming between spectral and original9 representation of a signal

is the discrete Fourier transform (DFT) and its inverse (IDFT, DFT−1). The DFT

supports decomposition of discrete and non-periodic functions of finite energy into

their harmonic constituents which differ in amplitude, phase, and frequency. The

frequency of the components is always a multiple of the fundamental frequency10.

8 The Landau-notation is used in computational complexity theory to express the maximum
resource requirements of an algorithm. Depending on the input length the requirements are
estimated asymptotically.

9 Depending on the application and number of dimensions the particular naming for ‘spectral’ and
‘original’ domains differs. One-dimensional signals usually depend on time; thus, ‘frequency’
and ‘temporal’ domain would be used synonym. In two-dimensional applications identification
with the ‘wavenumber’ and ‘spatial’ domain is common. For the sake of generality ‘spectral’
and ‘original’ domain are used throughout this thesis.

10 Jean Baptiste Joseph Fourier suggested the possibility for such a decomposition for periodic
and continuous functions in 1807. Due to much doubt in the scientific community about this
fundamental idea enclosed in the work Théorie analytique de la chaleur (The Analytical Theory
of Heat) it was not published until 1822 (Meffert and Hochmuth, 2004).

36

3 Examining the deformation of the Earth’s crust

The one-dimensional transform pair is defined as (note opposite signs in the expo-

nent):

Lm =
N−1∑
n=0

Lne
−j2π mn

N with m = 0, 1, . . . , N − 1 (3.16)

Ln =
1

N

N−1∑
m=0

Lme+j2π mn
N with n = 0, 1, . . . , N − 1 (3.17)

where Lm is the m-th spectral component and Ln is the n-th element of the discrete

signal which is of total length N . The transform and its inverse are linear and map

values from the complex plane into the complex plane. Since both, the transform

and its inverse, are calculated using the periodic11 discrete exponential function, Lm

(equation 3.16) and Ln (equation 3.17) are periodic as well. This is an important

property which uses to cause considerable confusion when not accounted for (e.g.)

in fast convolution.

Figure 3.6 shows a signal discretized in time. The result of a one-dimensional

DFT, Lm, is a vector of complex Fourier coefficients. Thus, real and imaginary

part, or norm and phase have to be displayed separately (see figure 3.6(b-d)). The

time signal is a discretized harmonic function consisting of a cosine and two sines

(Meffert and Hochmuth, 2004). The real part of the spectrum contains the cosine

(figure 3.6(b)), whereas the imaginary part contains both sines (figure 3.6(c)); one

with a large amplitude and a small frequency and the other with a smaller amplitude

and a twice the frequency.

An approach to perform a DFT more efficient than defined by equations 3.16

and 3.17 is called fast Fourier transform (FFT). Basically, symmetry and periodicity

of the complex exponential function and aggregation of partial sums that have to be

multiplied with the same factor are used to enhance performance. A precondition

for the algorithm to operate most efficiently is that the input signals’ dimensions

are a power of 2 (see, e.g., Meffert and Hochmuth (2004)).

At this point it is important to mention that space-invariance is a fundamental

11 An exponential function defined on the complex plane is periodic with the imaginary period
2πj. It can be written as ejφ = cos(φ) + j sin(φ).

37

3 Examining the deformation of the Earth’s crust

Figure 3.6: DFT example: a) original (time) signal discretized in interval [0,4).
The spectrum of the result of the DFT is shown as:
b) real part and c) imaginary part, and
b) norm and c) phase,
respectively (Meffert and Hochmuth, 2004)

prerequisite to this approach. Equations 3.16 and 3.17 show that all values of a signal

are used to calculate the DFT and the IDFT, respectively. Thus, the result refers to

the frequency content of the whole signal which makes it impossible to know anything

about the spatial location of a single spectral element (e.g., Meffert and Hochmuth

(2004)). In the original domain, however, it is possible to neglect spatial invariance

since Green’s functions are satisfied with the precondition of linearity. In modeling

practice that means Earth models containing faults or other singularities have to be

convolved with a load in the original domain utilizing the ‘slow’ convolution.

Convolution theorem If two signals are convolved in the original domain the

convolution theorem states that this is equivalent to the multiplication of the Fourier

38

3 Examining the deformation of the Earth’s crust

transformed signals (e.g., Meffert and Hochmuth (2004)). If

Ln ◦−• Lm and Gn ◦−•Gm

then

(L ∗G)n ◦−• Lm ·Gm with (L ∗G)n =
∞∑

m=−∞

Gn−mLm (3.18)

The “◦−•” operator denotes the transform between the respective domains.

3.6.2 Convolving a Green’s function and a load fast

Once the theory is introduced the fast convolution is a straightforward operation

as shown in figure 3.7. However, two trapdoors deserve closer attention when using

this approach:

• the fast convolution assumes periodical input, and

• the FFT takes only positive indices.

The first problem is due to the product of two DFTs always being periodic.

This leads to an operation identified as circular convolution which induces an (mostly

undesired) effect in the result which is referred to as wrap around effect. In contrast

to linear convolution in the original domain the two signals always fully overlap in the

spectral domain. To mimic a linear convolution in the spectral domain the signals

have to be zero-padded to a size S greater or equal to (x1 +x2−1)(y1 +y2−1), with

xi and yi being, respectively, the width and length of both two-dimensional signals.

If a FFT algorithm is used, S might be even greater since it must be a power of two

(Stearns and Hush, 1999).

The second problem is due to the response function being centered around

zero (as shown by the dotted region around G in figure 3.7). Here, the property

of the DFT being periodic is beneficial: after zero-padding, the negative parts of

the response function can be shifted to the far end of the signal (Battle, 1999).

Then the signals are transformed using the FFT and the convolution is performed

39

3 Examining the deformation of the Earth’s crust

L

L

G

X

U

2-D zero
padding

2-D zero
padding and
origin shift

2-D FFT 2-D FFT

Pointwise multiplication

2-D IFFT

Extract linear
convolution
result

U

* * =

X

X

y

y

u

y

X

v

Original
domain

Pre- / Post-
processing

Spectral
domain

G L U

Figure 3.7: Block diagram for the formal model; Green’s method. Convolution of a Green’s function (G) with a
load (L) depicted with two possibilities to obtain the convolution result (U) which are linked by the
means of the convolution theorem. The top row of images illustrates the 2D convolution in the original
domain and is analogous to equation 3.14. The columns refer to the steps necessary to utilize the fast
convolution. In a pre-processing step G and L are zero-padded and G’s negatively indexed signal parts
(see dotted circle) are shifted to the far end of the zero-padded signal. After that, a 2D DFT (at best
FFT) is applied to G and L. The bottom row illustrates the pointwise multiplication of the resulting
spectra G and L. In the right column post-processing takes place; basically performing the preprocessing
in reverse order. First an inverse two-dimensional DFT is applied to the spectral product U. Following
that, the region of interest is extracted from the result to remove the zero-pad. The convolution theorem
states that the result U obtained by using the fast convolution is the same as obtained by convolving G
and L in the original domain. (figure concept from Battle (1999), changed)

40

3 Examining the deformation of the Earth’s crust

by pointwise multiplication of the spectra as suggested by the convolution theorem.

The inverse transform is applied to the result and the zero-pad can be removed to

obtain the linear convolution result.

3.7 Summary

We followed the scheme presented in figure 2.2 up to the point of deriving formal

models for the examined system. This was only possible after the theory of filters

adapted from signal processing was applied to the original system to derive an infor-

mal model. The author introduced the concept of Green’s method as a formal model

and thus a means to infer the lithospheric response to the mass force of a load. Then

two particular formal models for the subsystem lithosphere, to be used in Green’s

method, were introduced: Green’s functions for the elastic half-space and for a thick

elastic plate lying over and inviscid fluid. These functions form the foundation of

Green’s method as applied here since they formulate the characteristics of the litho-

sphere to which a mass force (whose mathematical formulation is rather simple in

comparison) is applied. The discrete Fourier transform (DFT) and the convolution

theorem were introduced to enable performing a convolution as a multiplication in

the spectral domain. This so-called fast convolution lowers the computational com-

plexity of a convolution from O(N2) to O(N log N), with N being the length of

the signal vector. The fast convolution therefore presents an efficient algorithm for

implementation of the formal model (see objectives in section 1.2).

41

4 The composable simulation

model: A plug-in based

simulation framework

“And while those trays certainly didn’t have

much glamour they nevertheless had the

hidden strength of a card catalog.”

(Robert M. Pirsig)

With regard to figure 2.2 two major tasks are left to be tackled in this chapter: de-

riving the composable simulation model and its test and validation. Chapters 2 and

3 provide the necessary background to transform the formal model into a software

system. In this chapter the author develops a plug-in based simulation framework

(PSF) that supports the functionality needed to realize the formal model, Green’s

method, derived in chapter 3 on the basis of software components.

In section 4.1 the author specifies the simulation framework in a general way.

Software components are identified and the logical data flow (input/output) between

them is described. Based on this, the suggested software architecture of the PSF is

detailed in section 4.2 which also precisely defines the terms ‘plug-in’ and ‘plug-in

based simulation framework’. The architecture consists of three logical layers: the

functional, the interface, and the management layer. Their general function is de-

scribed in section 4.2 as well. To ease the understanding of the subsequent sections,

section 4.3 presents a brief overview of implementation specifics, e.g., implemented

plug-ins and their handling in an Unix environment. The runtime scenarios illus-

42

4 The composable simulation model: A plug-in based simulation framework

trated by sequence diagrams in section 4.4 are utilized to explain the simulation

frameworks general functioning (an in-depth presentation of the implementation

which might help to gain a deeper understanding is given in appendix E). Since the

author implemented both the PSF and the plug-ins, testing is necessary. Section 4.5

gives an overview on the testing that was carried out and discusses how the com-

posable simulation model was validated. An evaluation of the PSF’s capabilities is

given in section 4.6.

4.1 Specification of the simulation framework

The idea behind the simulation frameworks architectural concept is the emulation

of Green’s method (see section 3.4) on which the formal models of section 3.5 are

based (compare to equation 3.14)1:

U = G ∗ ∗L (4.1)

G and L are, respectively, a Green’s function and a load function. U is a surface dis-

placement resulting from a two-dimensional convolution of G and L. In this general

form no dependencies on any model details exist. As for the architecture, a trans-

fer of the modularized structure that is inherent to equation 4.1 into a simulation

framework is intended. This is an implementation of the KISS principle. Hence,

G, ∗∗, and L represent subsystems as defined in section 2.4. They are software

components of the composable simulation model. Both, the operands (G and L)

and the operator2, are to be realized within the simulation framework in a way that

represents their variable nature.

The intended modularized structure enables software component reuse (see

1 This is basically equation 3.14 in an intentionally more simplified notation. Green’s method is
certainly not confined to a two-dimensional convolution. However, this operation applies to the
problem in this thesis and is therefore used in all equations. The operator also indicates the
dimensions of G, L, and U .

2 As implied in section 3.6, a convolution can be performed in at least two different ways, namely
in the original and spectral domain.

43

4 The composable simulation model: A plug-in based simulation framework

section 2.4 and figure 2.3) within the software components. The meaningfulness of

this feature within the simulation framework is obvious from equations 3.7 and 3.8.

The Green’s functions for the elastic half-space (equations 3.3 and 3.4) are used

in the formulation of the formal thick plate model for the lithosphere. Thus, it is

reasonable to reuse the software component that implements the elastic half-space

model in the software component that implements the thick plate model.

However, software component reuse / composability poses the problem of de-

pendencies between software components. To break down the complexity of solving

these dependencies (see NP-complete argument in section 2.4), reuse is restricted to

software components of the same category . Categories, understood as a structuring

element for the simulation frameworks software components, form proper subsets of

the set of available software components. These subsets subsume different imple-

mentations of a particular task in the simulation framework. For instance, each of

the terms G, ∗∗, and L of equation 4.1 is understood as such a category.

Given that the Green’s functions meet the prerequisites for the fast convolution

(see section 3.6), one software component of each category can be picked and com-

bined freely to compose a simulation model following the structure of equation 4.13.

Figure 4.1 depicts a logical data flow chart of the simulation frameworks specification

this far; reuse within categories is illustrated by reflexive arrows.

Figure 4.1 includes three additional software components which are not (an

explicit) part of the formal model. It is, however, found useful to provide them as

software components as well:

• The load history was already identified as a nonexchangeable system element

of the Earth-load-system (section 3.1), but yet not included in the formal

model since it is a mere alteration of the load characteristics depending on

time. Therefore, figure 4.1 makes clear that the load history is transparent to

the convolution operator. The load function retrieves the data directly from

the load history.

3 However, a Green’s function does not need to fulfill the prerequisite of space-invariance. These
functions can only be combined with operators that convolve in the original domain.

44

4 The composable simulation model: A plug-in based simulation framework

Green’s
function

Convolution
operator

Load
function

Load
history

Post-
processors

Result
handler

file system

G L = U* *

(sec. 3.5)

(sec. 3.5, E.2.3)

(sec. 3.6, fig. 3.7)

(sec. E.2.3)

(sec. E.2.4) (sec. E.2.5)

Figure 4.1: Data flow (arrows) between important software components (boxes) of the proposed simulation frame-
work. Since the framework is supposed to resemble the formal model (Green’s method) the gray dotted
lines denote the analogy between terms of equation 4.1 and software components. Additional software
components are added to increase functionality and flexibility. Reflexive arrows refer to a software com-
ponent that accesses functionality of another software component of the same category. The convolution
operator takes data from the Green’s and load function. The latter might be affected by a load history
depending on whether or not a time dependent load is to be simulated. Once a convolution result for
the examined area is calculated, one or more post-processors can be applied to the result. Finally, the
results are passed to a result handler that writes the modeling results in a particular format to the file
system. The terms in brackets denote references to sections where the respective component is detailed.

• The postprocessors apply functions to the model results. Applicable operations

are, for instance, simple coordinate system conversions or comparisons to real

data.

• The result handler takes the obtained (and post-processed) modeling results

and writes them to the file system. The intention for providing it as a software

component lies with the allowance for a multitude of (user defined) output

formats. Furthermore, the result handler can be ‘misused’ to provide an in-

terface to third-party software. This way, the simulation framework could be

utilized as a subsystem in a more complex software system that conforms to

the analysis objective (compare to the ’full (composable) simulation model

reuse’ scenario in section 2.4).

Figure 4.1 shows that the data generated by a Green’s function and a load func-

tion (possibly influenced by a load history) flow into a convolution operator. Both

functions might depend on other software components of their category. Once the

convolution operator possesses the necessary data it can produce a model result.

45

4 The composable simulation model: A plug-in based simulation framework

This can undergo alteration or extension by several postprocessors. Finally, a result

handler will write the data to a file of arbitrary format.

Even though the formal model is mapped to software components and the

scheme depicted in figure 4.1 could be implemented in some way, some thought

must go into the paradigm the simulation framework shall implement.

Independent from the domain in which the convolution is performed, space will

be treated in a discretized way. This is obvious since the load is a grid of unit point

masses (see section 3.4). Due to their complex, apparently random character real

load specifics (height, density distribution, see equation 3.2) cannot be described

by continuous functions. Thus, values at discrete points are used as averages over

small areas to model a real load. The formal models for the lithosphere introduced

in section 3.5 do not include any singularities like fractures. Such cases might need

adaptive gridding with a greater spatial resolution in areas of these singularities. The

distance between load points in the simulation framework is in any case regarded as

uniform over the modeled area. This grid-size must be a parameter determinable

by the user. The temporal evolution of surface displacements, on the other hand,

depends on two processes:

• changes of the load over time, i.e. the load history, and

• the relaxation of the lithosphere over time, i.e. the replacement of liquid mantle

material.

With regard to nature both are simultaneously working, continuous processes.

Currently only load histories are included in the simulation framework. The ap-

plication of load histories should therefore be limited to simulations that employ

Green’s functions for an instantaneous response of the Earth since this gives a ‘final’

displacement at each point in time. Pinel et al. (2007) suggest a formal model for

the relaxation process based on the convolution with time. Its implementation is,

however, beyond the scope of this thesis.

46

4 The composable simulation model: A plug-in based simulation framework

The model results for Earth models that are more realistic than the instan-

taneous response depend on the behavior of the lithosphere over time. Therefore,

model results are calculated at equidistant time steps of user-determined size. The

option of implementing the event driven simulation model paradigm (see section 2.2)

is neglected since an event could only be triggered by a load change. Although load

histories have not been examined very deeply within this thesis (an example is equa-

tion E.1), it is clear that parts of the lithospheric response would be missing in the

results if advance in time was modeled event based.

These considerations suggest a simulation framework that implements a dis-

crete time- and space-stepped simulation model paradigm.

4.2 Architecture

To achieve the objectives of enabling users to:

• exchange software components,

• extend the simulation framework independently with new software compo-

nents, and

• dynamically select software components that participate in a simulation,

a software architecture that supports the utilization of plug-ins is proposed in this

section.

The vague phrase ‘software parts’, used in the definition of the term plug-in

in section 2.1 which was supposed to give a mere intentional understanding of the

topic of this work, is now replaced by the concept of a software component:

Definition 2. A plug-in is a software component the user can add to or remove

from a software application to alter its functionality. An application utilizing plug-

ins must provide an infrastructure that, additionally to the creation of plug-in in-

stances (see ‘software component instances’), supports a mechanism that lets the

user manage the plug-ins of a software application. An infrastructure that provides

this functionality is referred to as plug-in based simulation framework (PSF).

47

4 The composable simulation model: A plug-in based simulation framework

To convert the concept presented in figure 4.1 into a PSF the architecture shown in

figure 4.2 is proposed. Due to the management effort that comes with the use of

plug-ins, the proposed architecture is structured into three logical layers (figure 4.2):

• a functional layer that contains the plug-ins associated with the PSF,

• an interface layer which contains the provided4- (Framework API) and needed5-

interfaces (plug-ins) of the simulation core (see below), and

• a management layer that provides the functionality the infrastructure must

possess to realize plug-in instances (see section 2.4).

The software components whose logical data flow is depicted in figure 4.1 are

included as plug-ins at the bottom of the scheme in figure 4.2. According to their

nature of adding all simulation functionality to the PSF (the complete formal model

is found in this layer), they form the functional layer. Interface and management

layer implement the logical data flow between the software components as shown in

figure 4.1 and therefore add composability to the simulation model (see section 2.4).

The central element of the PSF is the simulation core. It contains the main

loop which defines the sequence in which plug-ins and management elements must

operate to produce a model result. Furthermore, the simulation core manages the

function calls that plug-ins invoke at the PSF’s provided-interface, the framework

API. The simulation core will route the call to the respective needed-interface which

can access a plug-in instance that provides the requested functionality.

The input handler associated with the simulation core interprets the experi-

ment definition (see listing D.1 for an example). On the basis of this document a

simulation with the PSF is configured. The plug-ins that are wanted to participate

in a simulation, their parameter settings, and additional information such as the co-

ordinates of the region of interest and the spatial and temporal step sizes are defined

in this file. The input handler is responsible to validate6 the experiment definition

4 Provided-interfaces are interfaces where a software component offers a functionality.
5 Needed-interfaces are interfaces where a software component requests a functionality that is

offered, e.g., by a provided-interface of another software component.
6 In this context ‘validation’ refers to the confirmation that a document meets a defined format.

48

4 The composable simulation model: A plug-in based simulation framework

to a certain degree and make its contents accessible to the simulation core in an

appropriate form (e.g. convert parameter values from text to numbers).

The plug-in manager associated with the simulation core has access to a plug-in

repository and a plug-in database. Metadata that must be provided by each plug-in

is stored here on a plug-ins registration with the PSF. This includes for example

name, description of provided functionality, category, and location of the dynamic

Green
pluginIF

Load
history pluginIF

PluginIF

Simulation
core

Input handler

Plugin
manager

Experiment
manager

Experiment
database

Plug-in
database

Load
function Load

history
Green’s
function

Convolution
operator

Post-
processor

Framework
API

Interface
layer

Management
layer

Functional
layer

Result
handler

File
(model result)

Data out
pluginIF

general association,
A associated with B

A B
interface usage,
A uses interfaces provided by B

A B
generalization,
A is a specialization of B

A B

P
l
u
g
-
i
n
s

Plug-in
repository

Load
pluginIF

Experiment
definition

Figure 4.2: Architecture of the proposed plug-in based simulation framework. The software components of figure 4.1
are represented by plug-ins of the functional layer. The logical data flow depicted in figure 4.1 is realized
by the interface and management layers which provide the infrastructure to support communication
between the plug-ins. Input handler, experiment manager, and plug-in manager provide additional
functionality to implement the plug-in concept. The experiment definition contains the configuration of
a simulation.

49

4 The composable simulation model: A plug-in based simulation framework

library within the plug-in repository7. This is in accord to the demands of Overstreet

et al. (2002) who identify the capturing of objectives, assumptions, and constraints

as a key to reuse (see section 2.4).

Given the name of a plug-in, the plug-in manager can figure out whether

this plug-in is registered with the PSF. The plug-in manager returns the plug-ins

physical location in the repository (so-called path resolving) to the simulation core

in case it is registered. Before being registered with the PSF, the plug-in manager

checks whether or not a plug-in provides implementations of the frameworks needed-

interfaces. In case it does, the plug-in is added to the plug-in repository.

Knowing the locations of the plug-ins, the simulation core can create instances

of its needed-interfaces (e.g., PluginIF) and request each of them to bind an instance

of a plug-in. Figure 4.1 shows which interface binds an instance of which plug-in

(the provided-interfaces of the plug-in instances are connected to needed-interfaces

of the PSF). The difference between the several needed-interfaces is mainly the

parameterization of the ‘run’-function which must provide the functionality of a plug-

in. The ‘run’-function represents an analogy to the main function known from several

programming languages. The functionality of a ‘run’-function of a load function

plug-in would be, for instance, to calculate the unit point mass at a given point of

the modeled area. For this, it would need the points coordinates as parameters. A

post-processor, however, is simply told to work; without any parameters.

Functions that access a plug-ins metadata are inherited8 from the PluginIF-

interface. Loaded plug-ins use the frameworks API to request, e.g., data from other

plug-ins or resources from the PSF.

The experiment manager associated with the simulation core keeps a history

of the simulations (i.e. experiments) run by the PSF. Metadata, such as parameter

settings, modeling result location, utilized plug-ins, user, time, and date are stored

7 The plug-in repository is the location in the file system to store the dynamic libraries in a
controlled and organized way.

8 In object-oriented design an inheritance relation describes, here at the example of interfaces,
that an interface A that inherits interface B contains B (e.g. all its functions) as a subset.
Thus, at runtime instances of interface A can be interpreted as both interface A and (with the
limited functionality of B) interface B.

50

4 The composable simulation model: A plug-in based simulation framework

in an experiment database to allow later matching of modeling results to, and re-

construction of experiments.

The architecture of the PSF must furthermore account for two additional,

important features that are associated with the simulation core in the management

layer (to limit the figures complexity, these features are not included in figure 4.1):

• The functionality of a plug-in may depend on an unknown number of parame-

ters (defined by the plug-in) which get their values for each simulation assigned

in the experiment definition. Thus, a parameter registry must be implemented

and associated with the simulation core to link the definition and the initial-

ization of the parameters. Every plug-in can register an arbitrary number of

parameters with this registry. Before a simulation starts the input handler

must assure that the user provided all necessary values and no parameters

remain uninitialized in order to get each loaded plug-in to operate.

• A plug-in registry must be implemented to enable a plug-in to access the func-

tionality provided by another plug-in of its category.

4.3 Implementation

The architecture for a PSF as proposed in section 4.2 is implemented by the sim-

ulation framework CrusDe9 which the author developed within this thesis. Some

specifics on CrusDe’s implementation are given in this section. This includes in-

formation on some of the implemented plug-ins, how a plug-in concept is to be

implemented in an Unix environment, and a short presentation of the files that are

involved in a simulation. Since not all the implementation specifics can be included

here further details are given in appendix E.

9 http://www.grapenthin.org/projects/crusde

51

4 The composable simulation model: A plug-in based simulation framework

The plug-ins are physically represented by dynamic libraries in the plug-in

repository (file system) of the simulator (see appendix E.3). The reference imple-

mentation of the plug-ins is carried out using the programming language C. This

decision is not mandatory for future plug-ins as long as the symbols (e.g. function

names) appear in the expected way in the dynamic library (see appendix E.1 for

details on names of needed-interfaces). A reason to provide the reference implemen-

tation in the programming language C is that functions of a dynamic library are

easiest accessed when defined in a C rather than a C++ manner (e.g., Vandevoorde

(2006)). Both the management and interface layer are implemented in the program-

ming language C++ which is necessary since object-oriented design techniques such

as inheritance were found useful to apply.

4.3.1 Selected plug-ins

Within this thesis at least one plug-in per category has been implemented. This

section briefly describes the implemented plug-ins for some ‘key’-participants of a

simulation to derive surface deformation. These include the convolution operator,

the Green’s functions, load functions, and a result handler:

Operator: fast 2d convolution. As shown in figure 4.2 a convolution operator

has to implement the simulation cores PluginIF-interface. The particular

plug-in is not only responsible to perform the convolution, but must also take

care on the memory management of the convolution operands and the con-

volution result. This is mainly due to flexibility considerations: an operator

might want to have the operands and result in a special form (see 3.6). Thus,

providing operand and result memory, for instance, within the simulation core

would cause unnecessary overhead and negative runtime effects.

The one convolution operator that is part of CrusDe implements a fast two-

dimensional convolution as shown in figure 3.7. To realize this operation,

the ‘fast 2d convolution’ plug-in utilizes version 3 of the “Fastest Fourier

52

4 The composable simulation model: A plug-in based simulation framework

Transform in the West”10 (FFTW) software library (Frigo and Johnson, 2005).

FFTW provides the necessary transformations (DFT, IDFT) to transform the

operands to the spectral domain and the result of the complex multiplication

back to the original domain.

The ‘fast 2d convolution’ plug-in does not register any output fields or

parameters.

Green’s functions: elastic half-space & thick plate. A Green’s function plug-

in must implement the simulation cores Green PluginIF-interface (see fig-

ure 4.2). The following plug-ins provide implementations of formal Earth

models within CrusDe:

• ‘elastic halfspace (pinel)’ implements the Green’s functions given

by equations 3.3 and 3.4, and

• ‘thick plate (pinel)’ implements the Green’s functions given by equa-

tions 3.7 and 3.8.

On loading, both plug-ins register three output fields (they calculate sur-

face displacements in the x, y, and z direction). Furthermore, the ‘elastic

halfspace (pinel)’ plug-in registers parameters:

• g, the acceleration due to gravity with the SI-unit11 [m s−2],

• E, the Young’s modulus with the SI-unit [GPa], and

• nu, the Poisson’s ratio which has no unit.

Additionally, the ‘thick plate (pinel)’ plug-in registers the parameters:

• H, the plate thickness with the SI-unit [m], and

• rho f, the density of the underlying fluid with the SI-unit [kg m−3].

10 http://www.fftw.org

11 Système international d’unités

53

4 The composable simulation model: A plug-in based simulation framework

Load functions: disk load & irregular load. To serve CrusDe as a load func-

tion, a plug-in must implement the simulation cores Load PluginIF-interface

(see figure 4.2). Both implemented load function plug-ins expect the parameter

rho in [kg m−3] to be provided in the experiment definition.

The ‘disk load’-plug-in defines an uniform load in the shape of a disk in

the examined area. Parameters that have to be defined in the experiment

definition are (SI-unit [m], see listing D.1):

• center x, center y, define the disks center,

• radius, defines the radius of the disk, and

• height, defines the height of the disk.

The ‘irregular load’ plug-in differs from the disk load mainly in that it

reads the load heights from a separate load file. The load file is expected to

be in a tabular format with three columns separated by spaces and each row

containing only numbers. The values of each row are interpreted as:

Longitude Latitude Height

Longitude and latitude are expected to be integers in Lambert coordinates

[m].

Result handler: netcdf writer A result handler plug-in must implement the Data

out PluginIF-interface (see figure 4.2). One of the two result handlers that

are implemented within this work is the ‘netcdf writer’-plug-in. It is de-

scribed here, because it utilizes version 3.6.1 of the netCDF12 C library which

implements a standardized and machine independent format for writing and

reading of array-type data (Rew et al., 2006). Data of this type are widely

used in geoscience and have a very good tool support13.

12 http://www.unidata.ucar.edu/software/netcdf

13 E.g., ncview and GMT (Generic Mapping Tools) for data display and NCO (netCDF Operators)
for data manipulation.

54

4 The composable simulation model: A plug-in based simulation framework

Depending on the domain in which netCDF files are used, several conven-

tions14 for variable-naming, data units, and other necessary arrangements to

assure portability between programs are agreed upon. The ‘netcdf writer’

plug-in implements the Cooperative Ocean/Atmosphere Research Data Ser-

vice (COARDS) conventions which are implemented by many other geoscience

tools that support the netCDF format. This frees CrusDe, for instance, from

the need to implement a viewer for the modeling results.

This plug-in does neither register parameters nor output fields.

The interfaces each plug-in must implement are detailed in appendix E.1. More

detailed descriptions for all implemented plug-ins are given in appendix E.2.

4.3.2 Plug-ins in Unix environments

As mentioned above, the physical representation of a plug-in within CrusDe is

a dynamic library. This enables loading of a plug-in into the main application at

any point in runtime. On most Unix-like environments such libraries are called

‘shared objects’ usually found in files with the suffix ‘.so’, whereas in the Microsoft

Windows world they are referred to as ‘dynamic link library’ carrying the suffix

‘.dll’. Basically, both represent an identical concept but are to be handled slightly

different. This section gives a brief overview on how the plug-in concept is to be

realized on source code level in a Linux environment. Instructions on how to build

a dynamic library are found in appendix E.3.

Three steps are necessary to make use of a plug-in once the plug-in manager

mapped the name of a plug-in given in the experiment definition to a position of the

respective dynamic library in the plug-in repository. These steps are based on the

functions dlopen, dlsym, and dlclose (Linux manual , 2003) of the dynamic linking

loader. These functions are used to describe a load-access-unload cycle in CrusDe:

void *dlopen(const char *filename, int flag) – load a plug-in: Given the

position of the dynamic library, the function dlopen loads the dynamic library

14 http://www.unidata.ucar.edu/software/netcdf/conventions.html

55

4 The composable simulation model: A plug-in based simulation framework

and returns a ‘handle’ to it. The flag determines whether symbols15 in the

library are to be resolved when they are needed (RTLD LAZY), or instanta-

neously upon loading of the library (RTLD NOW). This function also increments

a reference counter that expresses how many instances of the library are used.

void *dlsym(void *handle, const char *symbol) – entity access: This func-

tion returns the memory address to which a symbol of the dynamic library

referenced by handle is loaded. Invoking a function pointer that is assigned

the returned memory address will invoke the function of the dynamic library.

int dlclose(void *handle) – unload plug-in: This function decrements the

counter of references to handle. The dynamic library is unloaded from main

memory by dlclose as soon as the reference counter is zero.

These steps are implemented within the PluginIF-interface and therefore avail-

able to all inheriting interfaces. Calling the load function at the PluginIF-interface

with the path to a dynamic library as a parameter, PluginIF will try to create

an instance of the plug-in using dlopen and bind all interfaces using dlsym. The

unload function of PluginIF invokes dlclose to destroy the plug-in instance.

4.3.3 Experiment files

Obvious from figure 4.2, CrusDe employs several files that have to meet specific

formats. Sorted into input and output of a simulation – the most common use case

of CrusDe; others are experiment or plug-in management – these files are:

• Input: experiment definition, plug-in database16, experiment data (load), and

• Output: experiment database and model results.

The work on experiment data and model results is entirely done by plug-ins (see

appendices E.2.3 and E.2.5). The format of these files depends on the particular

plug-in chosen by the user.

15 For example, names of variables or functions.
16 The plug-in database is used for output when plug-ins are added. This is, however, a different

use case.

56

4 The composable simulation model: A plug-in based simulation framework

All of the other files are in formats defined by the Extensible Markup Language

(XML)17. Reasons to use XML include that it is a simple and flexible format for

text documents standardized by the Wold Wide Web Consortium (W3C), and it is

supported by many freely available tools.

A program that reads and writes XML documents is referred to as XML-

processor or parser. Xerces-C++18 is a XML-processor written in a portable subset

of the C++ programming language and conforms to the XML 1.0 and associated

standards. This parser has the advantage of validating XML documents, i.e., it

automatically compares a document to a given Document Type Definition (DTD).

A DTD specifies elements of an XML document and rules for its format. This way

it can be assured that CrusDe’s expectations on the format of a particular file are

met.

4.4 Runtime scenarios

To give a better understanding of CrusDe’s processing chronology this section uti-

lizes three sequence diagrams to illustrate the functioning of the framework. At first

a short introduction to the UML sequence diagram notation is given in section 4.4.1

which is necessary to fully understand the diagrams. The first sequence diagram in

section 4.4.2 depicts an example of a full communication sequence between two plug-

ins via the simulation core. The subsequent diagrams will display ‘shortcuts’ when it

comes to plug-in communication to limit redundancy and complexity. Each of these

‘shortcuts’ can be replaced by a sequence similar to the one displayed in figure 4.3.

Section 4.4.3 describes the initialization sequence of CrusDe. This gives a general

idea of the work necessary to compose a simulation in accord to a given experiment

definition. The execution sequence of CrusDe is presented in section 4.4.4. There

it is shown how the logical data flow depicted by figure 4.1 is realized based on the

architecture presented by figure 4.2.

17 http://www.w3.org/XML/

18 http://xml.apache.org/xerces-c

57

4 The composable simulation model: A plug-in based simulation framework

4.4.1 UML sequence diagrams

A sequence diagram allows the graphical representation of runtime scenarios of

a software application. The notation of the presented sequence diagrams follows

mainly the syntax of the Unified Modeling Language (UML) 2.0 (e.g., Störrle (2005),

Wikipedia contributors (2007)). Without going too much into the details of this stan-

dardized graphical specification language, some of its symbols must be explained.

Participants in a sequence diagram are depicted by heads with attached par-

allel, vertical lifelines. A head contains the name of the participant (‘name:type’).

Horizonal arrows express messages exchanged between participants in the timely

order in which they occur in the software application. Messages can have a name

written above the arrow. If the arrow is solid with a filled triangle head, it represents

a synchronous call. The response to a synchronous call is a dashed arrow with a lines

head (omitted if the response is clear). The return value can be written over the

arrow. Rectangles drawn on the lifeline represent activation or method call boxes,

respectively. They illustrate that a participant is activated in order to respond to

a message. Since CrusDe does not implement any parallel processing, only one

participant is active at a time.

Rectangles with a little text area in the upper left corner represent combined

fragments which denote a complex interaction. The text area contains an interaction

operator (e.g. ‘alt’ for an alternative, ‘loop’ for a repeated interaction, ‘ref’ for

a reference to an external sequence diagram). The rest of the combined fragment

contains the operands. In the sequence diagrams presented in this thesis an operand

is usually a synchronous call.

4.4.2 Plug-in communication sequence

The plug-in communication is shown at the example of the convolution operator

instance f2dc (fast 2-dimensional convolution) that requests the unit point mass of

a load at point (x,y) from the instance of a load function plug-in. The time t is

irrelevant, because it is assumed that no load history function is modeled. Figure 4.3

58

4 The composable simulation model: A plug-in based simulation framework

 Plug-in Communication

Figure 4.3: CrusDe plug-in communication sequence

shows the respective communication sequence.

The first two function calls in figure 4.3 (run) mark the entry point to the

sequence which makes f2dc send the request for a load value. The request for a

value at point (x,y) and time t is sent to the simulation core via the frameworks

API function get load at. The simulation core routes this request to an instance

of the load interface LoadIF. This interface instance bound the needed-interface

getValueAt to get value at during initialization. The function get value at is a

provided-interface of the load function plug-in instance load. Since no load history

is modeled the unit point mass of the load at point (x,y) can be calculated directly

by load. The result unit point mass is returned to f2dc via all instances that were

involved in forwarding the request to load.

4.4.3 Initialization sequence

An excerpt of the initialization sequence of CrusDe is shown in figure 4.4. The main

function calls the simulation cores init function to enter this sequence. At first the

simulation core initializes the associated objects of the management layer. For the

sake of space preservation only the call of the init function at the input handler

instance is shown in figure 4.4. The input handler instance reads the experiment

definition on initialization (readExpDef). Its contents is now available to CrusDe.

59

4 The composable simulation model: A plug-in based simulation framework

 Initialization sequence

loop(1,num_symbols)

ref

ref

loop(1,num_plug-ins)

loop(1,num_plug-ins)

Register Output Fields

Request Plugins

Figure 4.4: CrusDe initialization sequence

60

4 The composable simulation model: A plug-in based simulation framework

In a giant loop19 follows loading and initialization of all the plug-in instances

requested in the experiment definition. At first, the simulation core gets the name of

a plug-in from the input handler. With some assistance from the plug-in manager the

plug-ins name is mapped to a location in the plug-in registry. This path is then given

to an instance of PluginIF using its load function. The interface instance creates

an instance of the plug-in by loading the shared library found at path using the

dlopen interface to the systems dynamic linking loader. The interface instance then

binds all the needed-interfaces it defines by loading the plug-ins provided-interfaces

using dlsym.

If successfully created, the simulation core will request the plug-in instance to

register its parameters. A plug-in must implement the function register parameter

in order to make this possible. Within this function a plug-in instance can call

the register param function at the frameworks API. The parameters address in

memory, its name and the plug-ins category must be provided with this call. The

simulation core saves the name/address pair to the field of the parameter registry

that is reserved for category. If different plug-in instances of the same category

will register a parameter with an identical name, both are assigned the same value

that is assigned first in the experiment definition.

The registration of output fields and plug-ins is analogous to the registration of

parameters and therefore only indicated by references to external sequence diagrams

in figure 4.4. When requesting the functionality of an existing plug-in, the name of

the requested plug-in must be given to the frameworks API in the same format as

it would be defined in the experiment definition. The simulation core will create an

instance of the requested plug-in just as described above and – upon success – return

a pointer to the requested plug-ins ‘run’-function (see appendix E.1 for details on

both).

Once all plug-ins are created and have their parameters registered the simula-

tion core calls the input handlers initParams function. The experiment definition is

19 In the program sources this is only to some extent true. Plug-in instances not directly bound
by PluginIF are loaded and initialized by the respective interface instances outside the loop.
For simplicity, however, it is depicted in this more general way.

61

4 The composable simulation model: A plug-in based simulation framework

searched for parameter names as they occur in the parameter registry and – in case

they are found – the parameter values are written to the memory address associated

with the parameter names. In case a parameter is not found in the experiment

definition, the simulation is aborted and CrusDe exits. After that, all plug-in in-

stances’ parameters are initialized and the init function of each plug-in instance

can be called. This way the plug-in instances can, for example, compute constants

that are used during the simulation on the basis of the parameter values.

4.4.4 Execution sequence

Figure 4.5 depicts CrusDe’s realization of the logical data flow as shown in fig-

ure 4.1. For clarity, the interface layer is completely omitted in the sequence diagram

since chronological order and the actors are of major interest (see section 4.4.2 for

communication details).

Most of the sequence in figure 4.5 is enclosed in a loop that repeats at least

once and at most time steps times which is a value that can be defined by the

user in the experiment definition. At each time step the simulation core will invoke

the run function of a convolution operator instance which in the depicted case is

the fast two-dimensional convolution f2dc. The operator will then iterate over the

simulation area (R) and request values from the Green’s function (for all spatial

directions the particular Green’s function calculates) and from the load function to

fill the inputs for the DFT (see figure 3.7). Therefore, f2dc invokes get array at

which has a pointer to an array the size of displacement directions as parameter.

This function calculates the defined Green’s function at point (x,y) and writes the

results into the given array. Upon that the load function is invoked by calling its

get value at function. If a load history instance exists, the load function instance

requests the load height at time t by calling constrain height. A unit point mass

for point (x,y) (at time t) is returned to f2dc.

62

4 The composable simulation model: A plug-in based simulation framework
 E

xe
cu

tio
n

se
qu

en
ce

al
t (

lo
ad

_h
is

to
ry

_e
xi

st
s(

)=
=

tr
ue

)

lo
op

(0
, R

)

lo
op

(0
,n

um
_p

os
tp

ro
cs

)

lo
op

(1
,ti

m
es

te
ps

)

F
ig

u
re

4
.5

:
C

r
u
sD

e
ex

ec
u
ti
o
n

se
q
u
en

ce

63

4 The composable simulation model: A plug-in based simulation framework

Once values for each point in R are obtained, f2dc can perform the fast con-

volution (see section 3.6) and inform the simulation core about the location of the

convolution result in memory using set result. The simulation core will then loop

over all defined postprocessor plug-in instances and have them execute their run

function on the obtained result. The model result for the actual time step is then

written to the file system by a result handler plug-in instance which defines the

output format of the data. Finally, after the processing is done for all time steps,

the experiment manager gets to archive this simulation in the experiment database.

Comparing the approach described above to the logical data flow as outlined

in figure 4.1, it is obvious that differences are only about who is pulling and who is

pushing the data.

4.5 Testing and validation

The introduction to this chapter mentioned two tasks that are to be worked on in

this chapter. With the implementation of the plug-in based simulation framework

(PSF) CrusDe that is described in the previous sections the first task is fulfilled.

With regard to figure 2.2 a stage is reached where the simulator can be used to

conduct experiments. However, when referring to section 2.5 apparently nothing is

known about how the modeling results can be trusted. To build up trust in the newly

implemented PSF the second task of this chapter, test and validation of CrusDe,

is carried out in this section.

The testing of CrusDe can be subdivided into:

• infrastructural tests which refer to the management and interface layer, and

• functional tests concerning the plug-ins or the functional layer, respectively.

Problems that can arise in the infrastructure from programming mistakes are

relatively simple and can be solved straightforwardly. Most of those errors are ob-

vious when the interaction with the environment (experiment definition, databases)

64

4 The composable simulation model: A plug-in based simulation framework

and plug-in communication are examined. Examinations of these interactions were

carried out for correct as well as a range of wrong user inputs (only then the case

study in chapter 5 is possible). However, CrusDe could still end up in an undefined

state and abort its service ungracefully when fed unspecified input.

The real problem comes with mistakes in the functional layer since as soon

as results are obtained it is uncertain whether they are right or wrong. A simple

test case was constructed and compared to an analytical result and results of a

similar simulation model that implements the same load models and Green’s func-

tions for the elastic half-space, but performs the convolution in the original domain

(Grapenthin and Sigmundsson, 2006).

As a test case the response of an elastic half-space to a disk load is examined.

Maximum vertical and minimum horizontal displacement are obtained under the

center of a disk. The results depicted in figures 4.6(a) and 4.6(b) correspond to this.

An analytic solution for the vertical displacement at this point can be derived from

equation 3.5 as given by Geirsson et al. (2006):

Uv,center = 2 ρ hR0 g
1− ν2

E
(4.2)

where Uv,center is the vertical displacement under the center of a disk, ρ is the density

of the load, h is the loads height, R0 is the radius of the disk, g is the acceleration

due to gravity, and ν and E are, respectively, Poisson’s ratio and Young’s modulus.

Table 4.1 shows the results for a disk load with the parameters height h =

150 m, radius R0 = 2 km, and density ρ = 1000 kg m−3 applied to an elastic half-

space with a Young’s modulus of E = 10 GPa and a Poisson’s ratio of ν = 0.25.

Table 4.1 shows that CrusDe misses the analytical solution by 2.2 mm in the

vertical and 0.1 mm in the horizontal displacement. The differences to the refer-

ence implementation by Grapenthin and Sigmundsson (2006) can be explained by

different techniques for the convolution. With respect to the difference in vertical

displacement table 2.1 in Grapenthin and Sigmundsson (2006) is referenced. There

the correlation between the spatial discretization and the error of the numerical

solution is shown. This is analog for the horizontal displacement. The impact of

65

4 The composable simulation model: A plug-in based simulation framework

0

2000

4000

6000

8000

10000

y

2000 4000 6000 8000 10000

x

Uv

0.1

0.2

0.3

0.4

0.5

[m]

(a) vertical

0

2000

4000

6000

8000

10000

y
2000 4000 6000 8000 10000

x

|Uh|

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

[m]

(b) horizontal

0

2000

4000

6000

8000

10000

y

2000 4000 6000 8000 10000

x

|Uh|/Uv

0.1

0.2

0.3

[m]

(c) ratio

Figure 4.6: Response of an elastic half-space to a disk load. The Young’s modulus and Poisson’s ratio of the half-
space are set to 10 GPa and 0.25, respectively. The disks parameters are set to height h = 150 m, radius
R0 = 2 km, and density ρ = 1000 kg m−3. Its center is at x = 5000 m and y = 5000 m.

spatial discretization when using the fast convolution is obvious from CrusDe’s

non-zero horizontal displacement in table 4.1 which will only be zero for infinitely

small grid sizes, e.g. dS approaches 0. However, comparing the horizontal displace-

ment shown in figure 4.6(b) to the solution of Grapenthin and Sigmundsson (2006)

identical patterns are observed. The horizontal displacement is maximum in the

area of the disks border and approaches zero under its center which is obvious from

vector arithmetics.

Conforming to Pinel et al. (2007) the ratio between horizontal and vertical

analytical solution CrusDe’s solution reference implementationa

Uv,center [m] 0.5518b 0.5496 0.5500
|Uh,center| [m] 0.0 0.0001 0
|Uh|/Uz ≤ 1/3c ≤ 1/3d ≤ 1/3

Table 4.1: Comparison of CrusDe’s solution for the response under the center of a disc load to a reference implemen-
tation and an analytical solution. The disk is characterized by height h = 150 m, radius R0 = 2 km, and
density ρ = 1000 kg m−3 and its center is at x = y = 5000 m. The elastic half-space has a Young’s mod-
ulus of E = 10 GPa and a Poisson’s ratio of ν = 0.25. The grid size is 10 × 10 m for a 10000 × 10000 m
region of interest.

a see Grapenthin and Sigmundsson (2006)
b from equation 4.2
c Note that this must be true for the whole modeled area, not just the center, see Pinel et al.

(2007)
d see figure 4.6(c)

66

4 The composable simulation model: A plug-in based simulation framework

displacements does not exceed 1/3 for an elastic half-space with ν = 0.25 as depicted

in figure 4.6(c) (see table 4.1).

Simulations that were run with different experiment definitions utilizing the

irregular load and sinusoidal load history plug-ins (see appendix E.2.3) produce re-

sults that conform to Grapenthin et al. (2006). Results obtained by Pinel et al.

(2007) could be reproduced using the thick plate plug-in for the Green’s function.

As stated by Pinel et al. (2007) it is observed that with increasing plate thickness

the response of the thick plate model equals the response of the elastic half-space.

These observations testify that:

• the infrastructure does indeed work,

• the fast convolution plug-in produces results with a tolerable error (with re-

spect to measurement errors in the mm-range) compared to the analytical

solution and the reference implementation,

• the Green’s functions for the elastic half-space (equations 3.3 and 3.4) and the

thick plate (equations 3.7 and 3.8) are implemented correctly,

• the load related plug-ins (disk load, irregular load, sinusoidal load history (see

appendix E.2.3)) are implemented correctly, and

• the post-processors (coordinate conversion and ratio plug-in (see appendix E.2.4))

and the result handler (table writer, netCDF writer (see appendix E.2.5)) are

also implemented correctly.

As for model validity, not much more than application validity (see section 2.5)

can be attested at this point. The satisfaction of the analysis objective is inherent

to the formal models presented in section 3.5. Therefore, no further proof for this

claim would be necessary. Anyway, the Green’s functions have been used in previous

studies where model results are confirmed by GPS measurements (Pinel et al., 2007;

Grapenthin et al., 2006) which should build up additional trust.

67

4 The composable simulation model: A plug-in based simulation framework

To attest behavior validity future studies have to show how well predictions fit

real data. An example that presents model forecasts which await confirmation by

measurements is the study by Ófeigsson et al. (2006). They examine subsidence due

to the new water reservoir Hálslón in the east of Iceland. Structural validity, however,

is not possible at all. The formal model results are mere surface displacements; no

activity within the lithosphere that would be represented by model states is included.

It must, however, be said that model validity is mainly inherent to the (Green’s

function) plug-ins and can change with each simulation depending on the partici-

pating plug-ins. Therefore, nothing absolute can be said when stating about model

validity in connection with CrusDe. The framework merely provides an infrastruc-

ture for ‘more or less’ valid simulation models.

4.6 Evaluation of the plug-in based simulation

framework

The implemented PSF provides the full infrastructure necessary to add and remove

plug-ins and have them communicate via defined framework interfaces. A plug-

in can rely on the framework which guarantees that fellow plug-ins will exist to

provide required data. For each of the defined categories exists at least one reference

implementation. Composed via an experiment definition, the plug-ins implement

Green’s method as described in this work. The implementation of the reference

plug-ins follows standards and conventions (see section 4.3.1 and appendix E.2) for

data storage. Yet, integration of plug-ins written in programming languages other

than C, especially FORTRAN, was not studied.

Although CrusDe is in a productive state, several difficulties exist:

• main memory: The current implementation of the fast convolution consumes

much main memory since both operands and the result are stored in arrays

about four times the size of the modeled area (see figure 3.7). This sets a lower

limit to the grid size depending on the available main memory of the simulator.

This problem can be solved by implementing, for example, a two-dimensional

68

4 The composable simulation model: A plug-in based simulation framework

overlap-add method (e.g, Smith (1997)) in which small chunks of the load are

subsequently convolved with a Green’s function. However, the simulator used

for this thesis has a total of 512MB RAM and did not run into problems with

experiment definitions that required as many as 1000× 1000 grid points.

• error messages: As mentioned above, CrusDe is tested for several, also

erroneous inputs, but cases exist where it will refuse to work and exit without

any useful hints regarding the problem.

• plug-in categories: Currently the framework API implements the category

distinctions for additional plug-in requests by a mere naming convention which

a plug-in developer can easily violate – accidently or on purpose. Since the

plug-ins are functionally without any intersection, doing this would not be of

much use. However, during registration of a plug-in with CrusDe a compar-

ison of its category to the categories of all plug-ins it requests could solve this

problem.

• experiment manager: The experiment management is currently the weakest

component of CrusDe since it is not much but a mere recorder and viewer for

past experiments. Useful functions, such as search and retrieval of old exper-

iment definitions are missing. Furthermore, the experiment manager should

not be as deeply woven into the architecture as it is right now. The defini-

tion of an experiment management interface for third-party solutions would

be of good use since a number of such systems exists. However, the evaluated

systems (e.g., Hawick and James (2004)) were designed to manage much big-

ger simulation models and are not included for this reason. Most experiment

management systems also require the user to install database management

systems such as MySQL. This collides with the objective to require as little

functionality as possible from the pre-existing working environment.

• parameter units & ranges CrusDe does not support the evaluation of

physical units for plug-in parameters. Although the SI-system is widely used

in science, other systems of units exist which may cause problems. The result

69

4 The composable simulation model: A plug-in based simulation framework

units might be clear from the original publications of the formal models or

the plug-in documentation, but the modeling results remain dimensionless

which is problematic when they are to be stored independent from CrusDe.

Furthermore, the definition and evaluation of parameter ranges would be useful

to avoid trouble by, e.g., errors in input magnitudes.

4.7 Summary

The scheme (figure 2.2, see section 2.3) that outlines the stages from an original

system to model results obtained from a simulation was followed to the very end

in this chapter by implementing a plug-in based simulation framework, presenting

tests, and a validation attempt. The suggestion of Overstreet et al. (2002) (see

section 2.4) to provide tools for modelers’ assistance rather than aiming for fully

automated composition was followed throughout this chapter.

Based on the formal model, Green’s method, that was introduced in section 3.4

the author specified a simulation framework. After re-defining the term ‘plug-in’ on

the basis of a software component the frameworks specification was transformed

into a layered software architecture for a plug-in based simulation framework. The

proposed architecture is mainly influenced by the idea of composable simulation

models as introduced in section 2.4. The management, interface, and functional lay-

ers were described followed by a description of the implemented PSF which is called

CrusDe. Several runtime scenarios in the form of sequence diagrams illustrated

the way CrusDe operates. A short description of the performed tests that utilize

the fast convolution as described in section 3.6 was given. The model was placed

on the lowest position in the validity hierarchy introduced in section 2.5. However,

a brief discussion showed that the plug-ins determine the validity of a composed

simulation model. A brief evaluation of CrusDe showed that it is in a productive

state. Improvements are, however, possible.

70

5 Case study: The Hekla 2000

lava

“If you have built castles in the air, your work

need not be lost; that is where they should be.

Now put the foundations under them.”

(Henry David Thoreau)

The purpose of this chapter is to place the developed PSF in the context of active

research that is concerned with understanding of deformation of the Earth’s crust.

Therefore, CrusDe is utilized to simulate both the instantaneous and the final

relaxed response to the (preliminary) lava flows that formed in the year 2000 during

the eruption to the Icelandic volcano Mt. Hekla. Following a general introduction

of the volcano and a brief motivation of this study in section 5.1, the specifics of

the study site are presented in section 5.2. The model results and a comparison

to estimates obtained from a model that relates subsidence to magma chamber

deflation are presented in section 5.3. Conclusions from this case study are drawn

in section 5.4.

5.1 Introduction

The Hekla volcano is located in the south-west of Iceland about 100 km east of

the capital Reykjav́ık (see figure 5.1). Being one of the most active volcanoes in

Iceland, it erupted 18 times during the last 11 centuries. From the 1970s on the

frequency of eruptions increased from about two eruptions each century to about one

71

5 Case study: The Hekla 2000 lava

24˚W 22˚W 20˚W 18˚W 16˚W 14˚W

64˚N

65˚N

66˚N

24˚W 22˚W 20˚W 18˚W 16˚W 14˚W

64˚N

65˚N

66˚N

0 50 100

km

Figure 5.1: Map of Iceland with the study site marked by the black rectangle (see figure 5.3 for blow-up)

every 10 years. In February 2000 the latest eruption covered an area of 17.93 km2

with 0.189 km3 lava (Höskuldsson et al., 2007). Assuming an average density of

2900 kg m−3 for basalt this eruption product weights about 54.81 1010 kg which is a

considerable load being applied to the Earth’s surface in this area. The eruptions of

1970, 1980-81, and 1990 added similar lava flows to the volcanic edifice.

Many volcanoes in the world show a more or less regular pattern in eruption

frequency over a certain time. Extrapolation of future eruption cycles based on past

behavior does not work well since behavior might change suddenly. Hekla is an ex-

ample where the time between eruptions shortened significantly from approximately

50 to 10 years. The opposite seems to happen, for instance, at the Katla volcano

about 60 km south-east of Hekla. Until 1918 major eruptions at Katla occurred in a

cycle of about 50 years which changed for an unknown reason. An obvious product

of long term volcanic activity is the volcano edifice itself which applies a significant

load to the lithosphere and might even affect its own behavior due stress changes

induced in the ground.

As a step towards understanding the lithospheric structure around Hekla, sur-

face displacements due to the (preliminary) February 2000 lava can be estimated

using the plug-in based simulation framework developed in this thesis. The com-

72

5 Case study: The Hekla 2000 lava

parison of model results to observations might reveal information about the charac-

teristics of the lithosphere and confirm areas suspected of irregular behavior (e.g.,

fractures) since these are not included in the model.

The interferogram in figure 5.2 shows an example observation of deformation

that took place in a period of about 4 years between 08/1993 and 06/1997 with a

maximum displacement of approximately 3 cm at the south-west and northern edge

of the volcano. Pagli (2006) describes an interferogram as a product of satellite radar

interferometry (InSAR), a geodetic technique to measure deformation. The basic

functioning is that synthetic aperture radar (SAR) satellites transmit a radio signal

to the Earth and measure the distance from the antenna to the ground and back.

They preserve amplitude and phase of the returning signal for each recorded ‘pixel’.

The phase difference between two SAR images that are acquired at different times,

but from about the same position in space is a measure of the change in distance

between the ground and the radar antenna. With changes in satellite positions

removed the phase difference can be attributed to deformation of the ground that

Figure 5.2: Interferogram showing subsidence at Hekla between 03/08/1993 and 27/06/1997. One color fringe
represents about 3 cm of vertical displacement seen at south-western and northern edge of the volcano
edifice (courtesy of Rikke Pedersen, Nordic Volcanological Center).

73

5 Case study: The Hekla 2000 lava

occurred between the acquisition of the two SAR images. Displacements as small

as 3 mm are detectable. They show up in the interferogram as so-called ‘fringes’; a

color band in which no color repeats. One fringe represents about 3 cm displacement

(see figure 5.2).

5.2 The study site: Experiment definition

Figure 5.3 shows a blow-up of the area enclosed by the rectangle in figure 5.1.

The preliminary outlines of the 4 lava flows of the Hekla 2000 eruption and the

topography of the area around the volcano are depicted.

The outlines of the lava flows describe the area of the load which is composed

of an array of unit point masses in a 100×100 m grid. The loads density is assumed

to be uniform over the area with a value of ρ = 2900 kg m−3; a typical value for

fresh basalt. The average heights of the flows differ significantly and are given in

table 5.1.

Results are obtained for both the instantaneous and the final relaxed response

utilizing the Green’s functions given by equations 3.3, 3.4 and 3.7, 3.8, respectively.

The year 2000 Hekla lava

19˚54'W 19˚48'W 19˚42'W 19˚36'W 19˚30'W 19˚24'W
63˚54'N

63˚57'N

64˚00'N

64˚03'N

64˚06'N

The year 2000 Hekla lava

19˚54'W 19˚48'W 19˚42'W 19˚36'W 19˚30'W 19˚24'W
63˚54'N

63˚57'N

64˚00'N

64˚03'N

64˚06'N

0 5

km

Figure 5.3: Map showing the topography of the study site and the preliminary Hekla 2000 lava flows — pink: north,
blue: north-south, green: south, red: south-west (compare to table 5.1).

74

5 Case study: The Hekla 2000 lava

The elastic parameters of the lithosphere are set to E = 40 GPa for the Young’s

modulus (Grapenthin et al., 2006) and ν = 0.25 for the Poisson’s ratio. The accel-

eration due to gravity of the Earth is g = 9.81 m s−2. The parameters for the thick

plate model are with H = 5 km for the plate thickness and ρf = 3100 kg m−3 for

the upper mantle density the same as used by Pinel et al. (2007) who studied the

nearby Katla volcano. Listing 5.1 shows the complete experiment definition utilized

to simulate the final relaxed response of the surface to the Hekla 2000 lava. The

experiment definition for the instantaneous response is the same; only the Green’s

function is changed to ‘elastic halfspace (pinel)’.

The model result obtained by a fast convolution is post-processed by adding

horizontal radial displacement using the ‘xy2r’ plug-in. Furthermore the ratio be-

tween horizontal and vertical displacement |Uh|/Uv is added to the result array using

the ‘hori2vert-ratio’ plug-in.

5.3 Model results

5.3.1 Instantaneous and final relaxed deformation due to

the Hekla 2000 lava

The results obtained from the two experiments are presented in figure 5.4 with

figure 5.4(a) – 5.4(c) showing the instantaneous and figure 5.4(d) – 5.4(f) showing

the final relaxed responses, respectively. An estimate of the time necessary for the

final relaxed response to be established would be on the order of tens to hundreds

of years (Pinel et al., 2007).

Lava field Mean thickness (m) Fraction of total area (%)
North 3 3.6

North-south 3 7.3
South 12 61.6

South-west 10 27.9
Mean 9.82 100

Table 5.1: Characteristics of the Hekla 2000 lava flows (Höskuldsson et al., 2007).

75

5 Case study: The Hekla 2000 lava

,
<?xml version="1.0" encoding="UTF -8"?>

3 <experiment name="hekla 2000 lava">

<file name="load" value="./ hekla_load .100. xyz" />
6 <file name="result" value="./ result_thickplate.nc" />

<region name="west" value="420000" />
9 <region name="east" value="520000" />

<region name="south" value="320000" />
<region name="north" value="420000" />

12

<parameter name="gridsize" value="100" />

15 <greens_function >
<plugin name="thick plate (pinel)"/>
<parameter name="g" value="9.81" /> <!-- acc. gravity [m/s^2] -->

18 <parameter name="nu" value="0.25" /> <!-- poissons ratio -->
<parameter name="rho_f" value="3100" /> <!-- density fluid [kg/m^3] -->
<parameter name="H" value="5000" /> <!-- plate thickness [m] -->

21 <parameter name="E" value="40"/> <!-- youngs modulus [GPa] -->
</greens_function >

24 <load_function >
<plugin name="irregular load" />
<parameter name="rho" value="2900" /> <!-- lava desity -->

27 </load_function >

<postprocessor >
30 <plugin name="xy2r" />

<plugin name="hori2vert -ratio" />
</postprocessor >

33

<output > <plugin name="netcdf writer" /> </output >

36 <kernel > <plugin name="fast 2d convolution" /> </kernel >

</experiment >

Listing 5.1: Hekla 2000 experiment definition

76

5 Case study: The Hekla 2000 lava

Unfortunately, at the time of this study no real deformation data has been

available to compare the modeled displacements to observations. However, there is

something striking about the almost circular final relaxed response. The regularity

is surprising given the irregularity of the input load which is still preserved in the

instantaneous response (though already low-pass filtered). Only small irregularities

are visible at the tip of the south-western lava flow for the vertical response and

under the center of gravity for the horizontal response.

The pattern emerging in figures 5.4(d–e)is interesting since it can easily be

mistaken with the response to a deflating shallow magma chamber. Magma chamber

pressure changes are often modeled as a point source of pressure in an elastic half-

space; the so-called ‘Mogi model’ (Mogi , 1958). The surface deformation in response

to a Mogi source is radially symmetric which accounts for the possibility of a mix-up.

Instantaneous response

360000

370000

380000

390000

400000

410000

y

440000 460000 480000

x

Uv

0.005

0.010

0.015

0.020

0.025

[m]

(a) vertical

360000

370000

380000

390000

400000

410000

y

440000 460000 480000

x

|Uh|

0.001

0.002

0.003

0.004

[m]

(b) horizontal

360000

370000

380000

390000

400000

410000

y

440000 460000 480000

x

|Uh|/Uv

0.1

0.2

0.3

[m]

(c) ratio

Final relaxed response

360000

370000

380000

390000

400000

410000

y

440000 460000 480000

x

Uv

0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

[m]

(d) vertical

360000

370000

380000

390000

400000

410000

y

440000 460000 480000

x

|Uh|

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018
[m]

(e) horizontal

360000

370000

380000

390000

400000

410000

y

440000 460000 480000

x

|Uh|/Uv

0.0

0.1

0.2

0.3

0.4

[m]

(f) ratio

Figure 5.4: a-c) Instantaneous response of an elastic half-space characterized by a Young’s modulus, E = 40 GPa
and a Poisson’s ratio ν = 0.25 to the Hekla 2000 lava. d-e) Final relaxed response of a thick plate
(H = 5 km, E = 40 GPa, ν = 0.25) over an inviscid fluid (ρ = 3100 kg/m−3) to the Hekla 2000 lava

77

5 Case study: The Hekla 2000 lava

,
<load_function >

<plugin name="disk load" />
3 <parameter name="height" value="9.82"/>

<parameter name="radius" value="2514" />
<parameter name="center x" value="467400" />

6 <parameter name="center y" value="384700" />
<parameter name="rho" value="2900" />

</load_function >

Listing 5.2: Disk load experiment definition excerpt. Changes to the original listing 5.1 are underlined.

In the following the final relaxed response of a disk is compared to the response

induced by a point source defined by the Mogi model. The Mogi model is introduced

in the following section 5.3.2. The disk is modeled with an uniform height of h =

9.82 m which is the weighted mean of the lava flow thicknesses (see table 5.1) and

a radius r = 2514 m which is obtained from the lava flow volume V = 0.195 km3

(calculated from gridded load). Listing 5.2 displays the respective changes of the

original experiment definition (listing 5.1).

5.3.2 Modeling a magma chamber: The Mogi model

The response to a point source in an elastic half-space with Poisson’s ratio ν = 0.25

in cylindrical coordinates is (Sigmundsson, 2006):

Uv = C
d

(d2 + r2)
3
2

(5.1)

Uh = C
r

(d2 + r2)
3
2

(5.2)

where d is the depth of the point source, r is the horizontal distance from the source,

and C is the source strength. Maximum uplift occurs directly above the source.

Thus, when setting r = 0 in equation 5.1 the source strength is (Sigmundsson,

2006):

C = h0 d2 (5.3)

where h0 is maximum vertical displacement.

78

5 Case study: The Hekla 2000 lava

The volume of the surface change due to pressure change of the point source

is given by Sigmundsson (2006):

∆Vedifice = 2 π C (5.4)

Obvious from the above equations, 4 free parameters must be fixed when using

the Mogi model: latitude, longitude, source depth, and source strength. Latitude

and longitude are the coordinates of the maximum final relaxed vertical displacement

(figure 5.4(d)) which is at x = 467400 m (longitude) and y = 383700 m (latitude).

The maximum height, h0 = 21.42 cm, is the maximum vertical response to a disk

load (see figure 5.5(a)). To obtain the source depth equation 5.3 is inserted in

equation 5.4 and solved for d:

d =

√
∆Vedifice

2 π h0

(5.5)

Using the volume of the lava flow, V , as volume of surface change, ∆Vedifice, the

source depth is at d ≈ 12 km. Using this in equation 5.3 gives a source strength of

C = 0.031 km3.

5.3.3 Response of a deflating magma chamber vs. final

relaxed response to a disk load

Since all free parameters of the Mogi model are fixed to reasonable values, the surface

displacements can be calculated for the area which is shown in figure 5.4. The

model results for both the final relaxed response to a disk load and the response to a

deflating magma chamber are shown in figure 5.5 (z-axis being directed downwards).

The first two rows in figure 5.5 show vertical displacements due to the disk,

the point source deflation, and the residual (Rv = Uv,disk − Uv,mogi). The first row

uses the same color scale for the three images, whereas the second row presents

each image with an individual scale. The vertical residual shows good correlation

between the responses directly underneath the area covered by the disk. Farther

79

5 Case study: The Hekla 2000 lava

away from the source the differences increase up to 1/6 of underestimation by the

Mogi response.

The last two rows in figure 5.5 show horizontal displacement with the same

scale settings as for the vertical response. The third row shows a huge difference in

the horizontal response which is to be quantified from the scales in the fourth row.

5.4 Discussion & conclusions

Since the model results are obtained with different underlying Earth models (Mogi

model: elastic half-space, disk load response: thick elastic plate / viscoelastic1), a

comparison of their results might appear like comparing apples and oranges. This

is only to some extent true. It is important to refer to the respective time scale.

A sudden eruption that lasts only a few weeks is very likely to cause only elastic

deformation due to pressure reduction in the magma chamber and due to the lava

flows. In this case the results obtained from simulations with the Mogi model can be

compared to the simulated instantaneous elastic response of the Earth induced by

the lava flows. Since at least the vertical elastic displacement due to a lava flow poses

a significant signal source, great care is necessary when GPS signals are analyzed

recorded in the vicinity of fresh lava flows; especially when source depths shall be

inferred from such data. If not avoidable at all, such surveys should be conducted

at a point in the region of interest that is farthest away from the center of gravity

of the fresh lava flow (which equals, for instance, the location of highest vertical

displacement in figure 5.4(a)).

When studying subsidence due to a volcanic eruption on time scales on the

order of years the comparison in figure 5.5 shows that the response to surface loading

and a deflating magma chamber might show the same circular pattern. The resulting

subsidence, however, differs significantly. Due to the low-pass characteristics of the

1 A viscoelastic substance has an elastic component and a viscous component. The viscosity of
a viscoelastic substance gives the substance a strain rate, i.e. rate of deformation, dependent
on time (http://en.wikipedia.org/wiki/Viscoelasticity, 19.07.07).

80

5 Case study: The Hekla 2000 lava

Final relaxed
response

Response to
a Mogi source

Residuals
(disk - Mogi)

v e r t i c a l

360000

370000

380000

390000

400000

410000

y

440000 460000 480000

x

0.00

0.05

0.10

0.15

0.20

[m]

(a)

360000

370000

380000

390000

400000

410000

y

440000 460000 480000

x

0.00

0.05

0.10

0.15

0.20

[m]

(b)

360000

370000

380000

390000

400000

410000

y

440000 460000 480000

x

0.00

0.05

0.10

0.15

0.20

[m]

(c) a - b

360000

370000

380000

390000

400000

410000

y

440000 460000 480000

x

0.00

0.05

0.10

0.15

0.20

[m]

(d)

360000

370000

380000

390000

400000

410000

y

440000 460000 480000

x

0.05

0.10

0.15

0.20

[m]

(e)

360000

370000

380000

390000

400000

410000

y

440000 460000 480000

x

−0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035
[m]

(f) d - e

h o r i z o n t a l

360000

370000

380000

390000

400000

410000

y

440000 460000 480000

x

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08
[m]

(g)

360000

370000

380000

390000

400000

410000

y

440000 460000 480000

x

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08
[m]

(h)

360000

370000

380000

390000

400000

410000

y

440000 460000 480000

x

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08
[m]

(i) f - g

360000

370000

380000

390000

400000

410000

y

440000 460000 480000

x

0.002
0.004
0.006
0.008
0.010
0.012
0.014
0.016
0.018

[m]

(j)

360000

370000

380000

390000

400000

410000

y

440000 460000 480000

x

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
[m]

(k)

360000

370000

380000

390000

400000

410000

y

440000 460000 480000

x

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0.00
[m]

(l) j - k

Figure 5.5: Disk load response (left column), Mogi source response (center column), and residuals (right column),
a-f) vertical response, g-j) horizontal response, the lava outlines are included for orientation

81

5 Case study: The Hekla 2000 lava

lithosphere (see section 3.3) and the observations in figure 5.4, it can be concluded

that the initially radially symmetric response to a point source would not change its

shape over time, only increase in amplitude. Therefore, the comparison in figure 5.5

holds. It is obvious from figure 5.5 that gradual subsidence due to the load on the

surface can superimpose or even mimic the signals of a Mogi type magma chamber.

This comparison is even more allowable when a response to sudden inflation

or deflation of a magma chamber might be superimposed by ongoing subsidence due

to ‘old’ surface loading. This is would involve both an instantaneous elastic and a

gradual viscoelastic response which is exactly what figure 5.5 compares. Thus, if

surface loading is ignored when inferring deformation sources and the deformation

is attributed to a deflating magma chamber, moderate errors in the vertical and

significant errors in the horizontal displacements are to be expected.

Seismic studies conducted by Soosalu and Einarsson (2004) do not support the

existence of a magma chamber between 4 km to 14 km underneath the Hekla volcano

which makes the assumption of a point source at 12 km highly questionable. Thus,

when too much, e.g. all, of the deformation signal is attributed to magma chamber

deflation the source will be estimated at too shallow depth which is clear from

equation 5.5 (assuming constant volume). The source depth d is inversely correlated

to the square root of the maximum vertical displacement. Thus, especially when the

estimated maximum vertical displacement is ‘small’, e.g. h0 < 1 m, small variations

of h0 will have a significant effect on source depth variations.

A suggestion that can be inferred from the simulations conducted in this chap-

ter is that if magma chamber constraints are to be estimated directly after an erup-

tion or during the time span of ongoing, expected viscoelastic response induced by

eruption products at the surface, care is required when applying the Mogi model

(the same might hold for viscoelastic responses to glacial dynamics if a volcano is

covered by an ice cap). Additional factors posed by the surface load must be consid-

ered and constrained by careful measurements and interpretations of observations

and eruption histories to correct the recorded data for such signal sources.

A good indicator whether observed displacement patterns are the (elastic)

82

5 Case study: The Hekla 2000 lava

response to a deflating magma chamber or (viscoelastic) subsidence of the crust due

to loading might be the ratio between horizontal and vertical displacement.

Future studies must look deeper into that. A suggestion would be to simu-

late the ongoing subsidence at Hekla (convolution with time (Pinel et al., 2007)) in

response to the lava flows (1970-2000) and compare the emerging pattern to obser-

vations.

5.5 Summary

Using the example of a recent Icelandic lava flow, it was demonstrated that the

PSF is in a development state mature enough to actually aid answering questions

in crustal deformation science. CrusDe’s allowance for painless simulation model

composition and straightforward parameterization, all within a clear experiment

definition, fosters structured simulations. It could be shown that it is possible to

adjust simulations at ease to questions thrown up by obtained results – provided

the necessary functionality is already implemented as a plug-in compatible with

CrusDe.

83

6 Summary, conclusions & outlook

“Everything is interaction.”

(Alexander von Humboldt)

The plug-in based, discrete time- and space-stepped Crustal Deformation simula-

tion framework CrusDe is developed in this thesis. A layered architecture consist-

ing of management, interface, and functional layers is proposed to realize Green’s

method for the Earth-load-system as a composable simulation model. CrusDe

implements this architecture in the C/C++ programming language for Linux envi-

ronments.

The interaction between the architectural layers allows for a decomposition of

Green’s method into its elements Green’s function, load function, and convolution

operator. Each represents a model category that can hold a multitude of different

implementations. These are treated as plug-ins in the sense that users select a par-

ticular implementation from each category to compose a simulation model. CrusDe

(on the management layer) in turn plugs the user selections into the underlying simu-

lation model (functional layer) for each specific simulation. Supplemental categories

to the ones given above are defined by the framework and include the postprocessor

and the result handler category. They allow, respectively, for user-defined alteration

of a modeling result and arbitrary data storage formats.

Users can individually add new plug-ins to each category. The framework sup-

ports reuse of functionality provided by existing plug-ins for new implementations

within the same category. In an experiment definition formulated in XML, users

define the plug-ins and provide values for parameters to configure a particular sim-

ulation. An embedded experiment manager stores both experiment definition and

84

6 Summary, conclusions & outlook

additional metadata in a XML database after a completed simulation.

To describe the stepwise transformation of the observed phenomenon – the

displacement of the Earth’s surface due to load changes – into a program architecture

that can be implemented to execute simulations, a general sequence of techniques

for finding solutions for simulation problems is utilized. The observed phenomenon

is first identified as emerging from the Earth-load-system for which, due to the

complexity of the lithosphere, a variety of informal models exist. To transform

informal models into formal mathematical expressions the analogy of the lithosphere

as a linear space-invariant (LSI) filter is used. This enables utilizing Green’s method

as a formal model since the LSI analogy fulfills the necessary preconditions (linearity)

for its use. Based on this formal model a program architecture that utilizes the

modularity of Green’s method to realize user-driven composition of the simulation

model is developed. Two existing Green’s functions are provided as plug-ins which

represent the lithosphere as an elastic half-space and a thick elastic plate over an

inviscid fluid. Since these functions are not only linear but also space-invariant, a

convolution operator plug-in could be provided that implements the fast convolution.

Trust is the model that CrusDe implements comes from previously conducted

studies that utilized the same model to examine effects of glacial loading in Iceland on

different scales. These studies confirm the model results with GPS measurements.

Another study uses the model results to forecast subsidence due to a new water

reservoir in the east of Iceland which awaits confirmation by GPS data.

As for trust in the implementation of the developed simulation framework,

CrusDe’s results for the simple test case of a disk load correspond to that of an

analytical solution for displacements under the center of the disk. Furthermore,

the results correspond to a reference implementation in which Green’s method is

executed in the original domain. Additionally, the results of the following studies

could be reproduced:

• elastic and final relaxed response to a load at the Mýrdalsjökull ice cap con-

ducted by Pinel et al. (2007),

• elastic response to annual load cycles (involves load history) at the four largest

85

6 Summary, conclusions & outlook

Icelandic ice caps conducted by Grapenthin et al. (2006), and

• elastic response to minimum and maximum water levels of the new water

reservoir Hálslón in the east of Iceland conducted by Ófeigsson et al. (2006).

Moreover, a case study conducted in this thesis utilizes CrusDe to examine the

lithospheric response to the lava of the year 2000 eruption of the Icelandic volcano

Mt. Hekla (see section 5.4 for conclusions drawn from this study).

Applicability of CrusDe to all these surveys underlines its flexibility. It is concluded

that:

• CrusDe supports all types of load, since all loads can be expressed by height

and (average) density,

• CrusDe supports all geographical settings when the provided instantaneous

and final relaxed response are applicable or models of the lithosphere in the

form of Green’s functions exist,

• adjusting the simulation framework to new study sites requires only few set-

tings in a XML file,

• the simulation framework is designed to ease user-driven extensions, and

• CrusDe tries its best to test the consistency of new plug-ins, but can by no

means test the semantics a plug-in intends to provide.

Application scenarios for CrusDe in scientific work can be derived from its analysis

objective (see section 3.1) and include:

• solving a particular loading problem (surface deformation) in the form of a

quantitative estimation of anticipated effects,

• solving a particular inverse loading problem (surface deformation) by fitting

results to real observations (e.g., GPS or InSAR data) and thus infer knowledge

about a system element (e.g., parameters of the lithosphere), and

86

6 Summary, conclusions & outlook

• assistance in planning of GPS and InSAR campaigns to locate deformation

patterns that are either of interest to a measurement campaign or might in-

terfere with the actual study.

During testing and the case study the following possible improvements and exten-

tions for CrusDe surfaced:

• A convolution operator plug-in that supports convolution with time to allow for

the simulation of a transition between instantaneous and final relaxed response.

• A convolution operator plug-in that supports the overlap-add method (Smith,

1997). This would enable more efficient use of memory and arbitrarily small

grids.

• Support of plug-ins in FORTRAN is very desirable since much scientific pro-

gramming uses this language. Adjustments on the interface layer would be

necessary.

• Support of composite surface loads. This requires an additional load plug-

in that calculates average densities of the unit point masses depending on

densities and respective heights given for a particular point.

• Direct application of postprocessors to existing modeling results.

• An improved simulation management featuring searches, editing, and export

of experiment definitions.

• Definition and evaluation of parameter units and ranges to assure a correct

parameterization and a more convenient interpretation of the modeling results.

• Useful error messages for cases in which CrusDe fails.

• A GUI that aids the creation of an experiment definition (possible in any

(domain specific) graphical language) and writes them to XML files.

• Green’s functions should notify CrusDe whether they are space-invariant.

87

6 Summary, conclusions & outlook

Direct comparisons of model results obtained using different Green’s functions

that formalize an identical informal Earth model will be possible at some point.

Minding the respective boundary conditions of the Green’s functions, a discussion

about the impact of both complexity of the informal model and the respective formal

model is possible when model results are compared among each other and to real

data. In a sense this would liberate findings obtained by simulation from depending

on a particular numerical expression.

In the long term some thought must be given to requirements that CrusDe

has to fulfill to be compatible to multi-framework environments (e.g., Argent and

Rizzoli (2004)). Due to the its specific functionality reuse of the full composable

simulation model within a greater simulation context is an option. Of course, the

including multi-framework must assure that CrusDe’s analysis objective is met.

88

Bibliography

Argent, R. M., and A. E. Rizzoli (2004), Development of Multi-Framework Model
Components, in Integrated Assessment and Decision Support, Proceedings of the
2nd Biennial Meeting of the International Environmental Modelling and Software
Society, edited by Claudia Pahl-Wostl and Sonja Schmidt and Andrea E. Rizzoli
and Anthony J. Jakeman, iEMSs.

Barletta, V. R., C. Ferrari, G. Diolaiuti, T. Carnielli, R. Sabadini, and C. Smiraglia
(2006), Glacier shrinkage and modeled uplift of the Alps, Geophys. Res. Lett., 33,
L14,307, doi:10.1029/2006GL026490.

Battle, D. J. (1999), Maximum Entropy Regularisation Applied to Ultrasonic Image
Reconstruction, Ph.D. thesis, University of Sydney.

Böhme, H. (2007), Softwarekomponenten mit eODL und SDL für verteilte Systeme,
Ph.D. thesis, Humboldt-University Berlin.

Bronstein, I., K. Semendjajew, G. Musiol, and H. Mühlig (2001), Taschenbuch der
Mathematik, 5 ed., 1191 pp., Verlag Harri Deutsch.

Challis, L., and F. Sheard (2003), The Green of Green’s Functions, Physics Today,
56 (12), 41–46.

Fischer, J., and K. Ahrens (1996), Objektorientierte Prozeßsimulation in C++, 360
pp., Addison-Wesley.

Francis, P., and C. Oppenheimer (2004), Volcanoes, 521 pp., Oxford University
Press.

Frigo, M., and S. G. Johnson (2005), The Design and Implementation of FFTW3,
Proc. IEEE, 93 (2), 216–231.

Fujimoto, R. M. (2000), Parallel and Distributed Simulation Systems, 320 pp., John
Wiley & Sons, Inc.

Galassi, M., J. Davies, J. Theiler, B. Gough, G. Jungman, M. Booth, and F. Rossi
(2007), GNU Scientific Library – Reference Manual, Free Software Foundation,
1.9 ed.

89

Bibliography

Geirsson, H., T. Árnadóttir, C. Völksen, W. Jiang, E. Sturkell, T. Villemin,
P. Einarsson, F. Sigmundsson, and R. Stefánsson (2006), Current plate movements
across the Mid-Atlantic Ridge determined from 5 years of continuous GPS mea-
surements in Iceland, J. Geophys. Res., 111, B09,407, doi:10.1029/2005JB003717.

Grapenthin, R., and F. Sigmundsson (2006), The Green’s functions technique in
crustal deformation and its applications (WT), Tech. Rep. 0602, The Nordic Vol-
canological Center, Reykjav́ık, Iceland.

Grapenthin, R., F. Sigmundsson, H. Geirsson, T. Árnadóttir, and V. Pinel (2006),
Icelandic rhythmics: Annual modulation of land elevation and plate spreading by
snow load, Geophys. Res. Lett., 33, L24,305, doi:10.1029/2006GL028081.

Hawick, K., and H. James (2004), Distributed Scientific Simulation Data Manage-
ment, Tech. Rep. CSTN-008, Institute of Information and Mathematical Sciences,
Massey University.

Höskuldsson, A., N. Óskarsson, R. Pedersen, K. Grönvold, K. Vogfjörd, and
R. Ólafsdóttir (2007), The millennium eruption of Hekla in February 2000, Bull.
Volcanol., doi:10.1007/s00445-007-0128-3.

Kasputis, S., and H. C. Ng (2000), Composable simulations, Proceedings of the 2000
Winter Simulation Conference, pp. 1577–1584.

Linux manual (2003), Linux Programmer’s Manual:dlopen(3).

Mayer, J., I. Melzer, and F. Schweiggert (2003), Lightweight plug-in-based appli-
cation development, Lecture Notes in Computer Science; Objects, Components,
Architectures, Services, and Applications for a NetworkedWorld: International
Conference NetObjectDays, NODe 2002, Erfurt, Germany, October 7-10, 2002.
Revised Papers, 2591/2003, 87–102.

Meffert, B., and O. Hochmuth (2004), Werkzeuge der Signalverarbeitung, 274 pp.,
Pearson Studium.

Mogi, K. (1958), Relations between eruptions of various volcanoes and the defor-
mations of the ground surface around them., Bull. Earthquake Res. Inst. Univ.
Tokyo, 36, 99–134.

Ófeigsson, B., P. Einarsson, F. Sigmundsson, E. Sturkell, H. Ólafsson,
R. Grapenthin, and H. Geirsson (2006), Expected Crustal Movements due to
the Planned Halslón Reservoir in Iceland, in Eos Trans. AGU , Fall Meet. Suppl.,
vol. 87(52), pp. Abstract T13A–0495.

Oreskes, N., K. Shrader-Frechette, and K. Belitz (1994), Verification, Validation, and
Confirmation of Numerical Models in the Earth Sciences, Science, 263, 641–646.

Overstreet, C. M., R. E. Nance, and O. Balci (2002), Issues in Enhancing Model
Reuse, in International Conference on Grand Challenges for Modeling and Simu-
lation, Jan. 27-31, San Antonio, Texas, USA, San Antonio, Texas, USA.

90

Bibliography

Page, E., and J. Opper (1999), Observations on the Complexity of Composable
Simulation, Proceedings of the 1999 Winter Simulation Conference, pp. 553–560.

Pagli, C. (2006), Crustal Deformation Associated with Volcano Processes in Cen-
tral Iceland, 1992-2000, and Glacio-isostatic Deformation Around Vatnajökull,
Observed by Space Geodesy, Ph.D. thesis, University of Iceland.

Paul, R. J., and S. J. Taylor (2002), What use is model reuse: is there a crook at
the end of the rainbow?, Proceedings of the 2002 Winter Simulation Conference,
pp. 648–652.

Pidd, M. (2002), Simulation software and model reuse: A polemic, Proceedings of
the 2002 Winter Simulation Conference, pp. 772–775.

Pinel, V., F. Sigmundsson, E. Sturkell, H. Geirsson, P. Einarsson, M. T. Gud-
mundsson, and T. Högnadóttir (2007), Discriminating volcano deformation due
to magma movements and variable surface loads: Application to Katla subglacial
volcano, Iceland, Geophys. J. Int., 169 (1), 325–338.

Press, F., and R. Siever (1978), Earth, 2nd ed., 649 pp., W.H. Freeman and company,
San Francisco.

Rew, R., G. Davis, S. Emmerson, H. Davies, and E. Hartnett (2006), The NetCDF
Users Guide, Unidata Program Center, University Corporation for Atmospheric
Research, netCDF Version 3.6.1.

Sigmundsson, F. (2006), Iceland Geodynamics, Crustal Deformation and Divergent
Plate Tectonics, 228 pp., Springer-Praxis, Chichester, UK.

Smith, S. W. (1997), The Scientist and Engineer’s Guide to Digital Signal Process-
ing, 626 pp., California Technical Publishing.

Snieder, R. (2004), A Guided Tour of Mathematical Methods for the Physical Sci-
ences, 2nd ed., 507 pp., Cambridge University Press.

Soosalu, H., and P. Einarsson (2004), Seismic constraints on magma chambers at
hekla and torfajökull volcanoes, iceland, Bull. Volc., 66 (3), 276–286, doi:10.1007/
s00445-003-0310-1.

Stearns, S. D., and D. R. Hush (1999), Digitale Verarbeitung analoger Signale, 7th
ed., 571 pp., R. Oldenburg.

Störrle, H. (2005), UML 2 für Studenten, 320 pp., Pearson Studium.

Thornton, S. T., and J. B. Marion (2003), Classical Dynamics of Particles and
Systems, 5th ed., 672 pp., Brooks Cole.

Turcotte, D. L., and G. Schubert (2002), Geodynamics, 2nd ed., 528 pp., Cambridge
University Press.

91

Bibliography

van Dam, T., H.-P. Plag, O. Francis, and P. Gegout (2002), GGFC Special Bureau
for Loading: Current Status and Plans, in Proceedings of the IERS Workshop on
Combination Research and Global Geophysical Fluids, IERS Technical Note No.
30, pp. 180–198.

Vandevoorde, D. (2006), Plugins in C++, Tech. rep.

Wagenbreth, O., and W. Steiner (1990), Geologische Streifzüge, Landschaft und
Erdgeschichte zwischen Kap Arkona und Fichtelberg, 4th ed., 204 pp., Deutscher
Verlag für Grundstoffindustrie, Leipzig.

Watts, A. B. (2001), Isostasy and Flexure of the Lithosphere, 478 pp., Cambridge
University Press.

Wikipedia contributors (2007), Wikipedia: Unified modelling language, online (last
checked: 07/2007).

Winnel, A., and J. Ladbrook (2003), Towards composable simulation: Supporting
the design of engine assembly lines, in 17th European Simulation Multiconference
ESM2003, June 9-11, 2003 Nottingham, UK Foundations for Successful Modelling
& Simulation, edited by D. Al-Dabass.

Zeigler, B. P., H. Praehofer, and T. G. Kim (2000), Theory of Modeling and Simu-
lation, 2nd ed., 510 pp., Academic Press.

92

A Symbols

Symbol Quantity SI unit (where
applicable)

A coefficient for thick plate model
B coefficient for thick plate model
C coefficient for thick plate model
C source strength (sec 5.3.2) m3

d source depth m
D coefficient for thick plate model
ex exponential function
E Young’s modulus Pa
f(t) continuous time signal
f(tn) discrete time signal
fx,y discrete, two-dimensional input signal (filter)
Fm spectral coefficients of a DFT
g acceleration due to gravity m s−2

gx,y discrete, two-dimensional output signal (filter)
G Green’s function m kg−1

G(~r, ~r′) Green’s function that determines displacement at
point ~r in response to a load at point ~r′

m kg−1

Gh(r) Green’s function that determines horizontal dis-
placement at a point r

m kg−1

GH
h (r) Green’s function that determines horizontal dis-

placement at a point r dependent on a plate thick-
ness H

m kg−1

Gv(r) Green’s function that determines vertical displace-
ment at a point r

m kg−1

GH
v (r) Green’s function that determines vertical displace-

ment at a point r dependent on a plate thickness
H

m kg−1

Gx,y Green’s function that determines displacement at
point (x, y)

m kg−1

h height m
h0 maximal vertical displacement m

93

A Symbols

h(~r′) height at point ~r′ m
H plate thickness m
J0 Bessel function of zeroth order
J1 Bessel function of first order
L load, load function kg
Ln n-th value of a discrete (1D) signal

L(~r′) unit point mass at point ~r′ kg
Lx,y unit point mass at point (x, y) kg
Lm m-th spectral component of a signal
N number of elements in a discrete signal m
r horizontal distance m
R area, region of interest m2

R0 radius of a disk m
Rh residual of horizontal displacement m
Rv residual of vertical displacement m
Rx width (of region of interest) m
Ry length (of region of interest) m

~r, ~r′ point in cylindrical coordinates
t time s

U(~r′) directionally unspecified displacement at point ~r′ m
Ux,y directionally unspecified displacement at point

(x, y)
m

Uh horizontal displacement m

Uh(~r′) horizontal displacement at point ~r′ m

UH
h (~r′) horizontal displacement at point ~r′ depending on

plate thickness H
m

Uv vertical displacement m
Uv,center vertical displacement under the center of a disk m
Uv,disk vertical displacement due to a disk load m
Uv,mogi vertical displacement due Mogi source m

Uv(~r′) vertical displacement at point ~r′ m

UH
v (~r′) vertical displacement at point ~r′ depending on

plate thickness H
m

V volume (of a lava flow) m3

(x, y) Cartesian coordinates of a point
∆ Vedifice volume of surface change m3

ν Poisson’s ratio —
ρ density kg m−3

ρ(~r′) density at point ~r′ kg m−3

94

B Contents of the CD

.

|-- crusde - CrusDe source code, incl. Makefile

| |-- doc_html - HTML documentation

| |-- experiment-db - home directory of experiment database

| |-- plugin_src - plug-in source code, Makefiles in subdirs

| | |-- data_handler - sources of result handlers

| | |-- green - sources of Green’s functions

| | |-- load - sources of load functions

| | |-- load_history - sources of load history functions

| | |-- operator - sources of convolution operator

| | +-- postprocess - sources of post-processors

| +-- plugins - plug-in repository, subdirectories as

| in ‘plugin_src’, plug-ins are installed

| to this folder

|-- examples - sample experiments definitions

| | and GMT scripts ...

| |-- disk - for a disk case

| +-- hekla - for case study (load + mogi data)

|-- gmt - mapping data (used in examples)

| +-- hekla - ... for hekla

|-- images - figures of the thesis

|-- latex - latex sources of the thesis

|-- libs - libraries needed for CrusDe

| |-- fftw - install FFTW here (see contents)

| |-- netcdf - install netCDF here (see contents)

| +-- xerces-c - install Xerces-C here (see contents)

|-- listings - source code listings used in thesis

+-- thesis_grapenthin.pdf - digital version of this document

95

C Installation and simulation

To install CrusDe the complete crusde directory of the enclosed CD must be

copied to a position in the file system that is writable (all subdirectories and files

of must be changed to writable after being copied from the CD). Before the sim-

ulation framework can be compiled and linked, the libraries in the libs directory

must be installed to the prepared directories. The instructions of the particular

library (included in the prepared directory) are to be followed for installation. Fur-

thermore, the Qt-library (http://www.trolltech.com) must be downloaded and

installed (CrusDe is tested for version 4.1.1). The Makefile in the crusde direc-

tory expects Qt to be installed at /usr/local/Trolltech/Qt (change the variable

QT DIR in the Makefile if another place is preferred).

Changing into the crusde directory and executing: $> make all will compile

the sources and link them into the binary crusde. This will work only if all libraries

are installed correctly. All provided plug-ins are created in the plugin src directory.

Before any of the examples in the examples/* directories can be simulated,

every plug-in to be used with the framework must be registered. Appendix D.2

explains this step in detail. Additionally, the environment variable CRUSDE HOME

must be set to the path where the framework is installed.

Changing, for instance, to the examples/hekla directory and invoking:

$> ../../crusde/crusde hekla disk elastic.xml

will run an example simulation. The output is created in a file as specified in the

experiment definition (path must be given there as well). The installation of ncview

and the Generic Mapping Tools (GMT) for viewing the results, especially netCDF

files, is recommended.

96

D Sample experiment & use cases

In this chapter a sample experiment and the three use cases of CrusDe are ex-

plained. The first use case of CrusDe is simulation of loading effects; especially

surface deformation. The study area of the sample experiment is the Icelandic vol-

cano Mt. Hekla which is familiar from chapter 5. The experiment definition that

complements the ones already given in chapter 5 with an instantaneous response to

a disk load that builds up over time is explained in section D.1. The second use case

is the management of plug-ins which is described in section D.2. Management of

completed experiments represents the third of CrusDe’s use cases which is briefly

presented in section D.3.

D.1 Experiment definition

Listing D.1 shows a complete experiment definition that can be used to simulate

the response of an elastic half-space to a disk shaped lava buildup of the 12-day

millennium eruption at Mt. Hekla.

From listing D.1 it is obvious that an experiment definition is divided into two

parts. The global part from line 4–15 defines parameters important to the simula-

tion core such as the output filename and the region of interest. The timesteps

parameter is optional and only necessary when a load history is to be simulated.

The rest of the file from line 17–51 defines all the plug-ins that are composing

the simulation model of the experiment. The load history definition is optional;

all the others are mandatory. The only place to define more than one plug-in is

within the postprocessor definition (see lines 44–47).

97

D Sample experiment & use cases

,
<?xml version="1.0" encoding="UTF -8"?>

<experiment name="hekla , disk">
<file name="result" value="./ hekla_disk_elastic.nc" />

5 <!--result file -->

<region name="west" value="420000"/><!--region of interest -->
<region name="east" value="520000"/><!--Lambert coordinates -->
<region name="south" value="320000"/>

10 <region name="north" value="420000"/>

<parameter name="timesteps" value="12"/>
<!-- 12 day eruption -->

<parameter name="gridsize" value="500"/>
15 <!--side length of cells -->

<!-- EARTH MODEL -->
<greens_function >
<plugin name="elastic halfspace (pinel)"/>

20 <parameter name="g" value="9.81"/> <!--acc. due to gravity -->
<parameter name="nu" value="0.25" /> <!--Poisson ratio -->
<parameter name="E" value="40"/> <!--Young modulus -->

</greens_function >

25 <!-- SPATIAL LOAD MODEL -->
<load_function >
<plugin name="disk load" /> <!--disk geometry -->
<parameter name="height" value="9.82"/> <!--parameters describe -->
<parameter name="radius" value="2514"/> <!--density and -->

30 <parameter name="center_x" value="467400"/><!--dimensions of the -->
<parameter name="center_y" value="384700"/><!--disk load.-->
<parameter name="rho" value="2900"/>

</load_function >

35 <!-- TEMPORAL LOAD MODEL -->
<load_history >
<plugin name="sinusoidal" />
<parameter name="period_length" value="24" />

<!--twice the timesteps to simulate only load build -up -->
40 <parameter name="peak" value="12" />

<!--maximum is on the last simulated day -->
</load_history >

<postprocessor >
45 <plugin name="xy2r" />

<plugin name="hori2vert -ratio" />
</postprocessor >

<!-- postprocessor , result handler & convolution operator -->
50 <output > <plugin name="netcdf writer"/> </output >

<kernel > <plugin name="fast 2d convolution" /> </kernel >

</experiment >

Listing D.1: Example experiment definition.

98

D Sample experiment & use cases

The experiment definition is enclosed by the <experiment /> tag whose at-

tribute name serves as an identifier in the experiment database (see section D.3).

Given the experiment definition is saved to examples/hekla/disk elastic.xml,

it can be executed by invoking the following command at the command line:

$> ../../crusde/crusde disk elastic.xml

D.2 Using the plug-in manager

In case parameters or the name of a plug-in to be used in an experiment are forgot-

ten, or a new plug-in is to be added, the plug-in manager can be started from the

command line using the -P parameter:

$> ./crusde -P

Figure D.1 shows a screenshot of the plug-in manager’s graphical user interface

(GUI). The left column presents the names of all installed plug-ins sorted into a tree

of categories. Selecting one of the plug-ins, e.g., ‘elastic halfspace (pinel)’ as

depicted in the figure, will load all details about the plug-in that are found in the

database into the right frame. Dependencies and parameters are extracted from

the plug-in upon registration with the framework. Most of the other information

must be given by the plug-in developer as textual information in the plug-in (see

appendix E.3).

The first of the three buttons to the right allows adding a new plug-in. A

window will pop up which asks for the shared library (*.so) that is to be added.

The new plug-in is automatically sorted into the category it defines and saved to

the plug-in repository. It will show up in the plug-in tree when it passed the tests

the plug-in manager performs.

The delete button will remove the selected plug-in from the database. If a

category is empty, i.e. no plug-ins are installed, it will not show up in the tree view.

The close button will shut down the plug-in manager.

99

D Sample experiment & use cases

Figure D.1: Screenshot plug-in manager GUI

D.3 Using the experiment manager

The experiment manager is started from the command line using the -M parameter:

$> ./crusde -M

Figure D.2 shows a screenshot of the experiment managers GUI depicting the record

of the experiment that is defined in listing D.1. The interface is quite similar to that

of the plug-in manager. The leftmost frame shows the names (as defined in the

experiment definition) of all performed experiments which create categories for the

particular experiments. The experiment manager shows single experiments identi-

fied by date, time and user as item of the experiment name. Selecting one of the

experiments, e.g. the Hekla experiment from Sun 22 July 2007, will load all data

from the experiment definition into the right frame. Hitting the delete button will

remove the selected experiment from the database. The model results are, however,

not touched by this operation. The close button closes the experiment manager.

100

D Sample experiment & use cases

Figure D.2: Screenshot experiment manager GUI

101

E Implementation details

E.1 Interfaces of the simulation framework

This section intends to give a short overview of the ‘language’ in which the plug-

ins of the functional layer and the rest of the simulation framework communicate.

The communication works over several interfaces of the interface layer. From the

simulation cores point of view they can be divided into two categories:

• needed-interfaces, and

• provided-interfaces.

Needed-interfaces are interfaces a plug-in must implement in order to be of any

use to the simulation core. The simulation core uses these interfaces to retrieve

information about the plug-ins and to get them to do work. Provided-interfaces

(API) offer functionality to the plug-ins. Via this channel, plug-ins can request

information or make announcements to the simulation framework. The description

given here focuses on the most important interfaces and is not complete. A complete

documentation can be found on the enclosed CD in the folder /crusde/doc html

(see appendix B).

E.1.1 Needed interfaces

A needed-interface of the simulation core is a function a plug-in must implement,

because it is called at runtime. If a needed-interface is not implemented, CrusDe

cannot operate. Thus, the plug-in manager will test a candidate plug-in for existing

implementations of the needed-interfaces.

102

E Implementation details

Before any of the necessary interface functions is bound, instances of the plug-

ins have to be created. The simulation core delegates this responsibility to the

interfaces / interface classes (PluginIF, Load pluginIF, Green pluginIF, Load

history pluginIF, and Data out pluginIF). For each plug-in that is utilized

within CrusDe an instance of the respective interface class is created. This in-

stance will load a shared library from the plug-in repository which is then accessible

for interface binding. The plug-ins are loaded (and unloaded after the results are

obtained) in this sequence:

1. Green’s function,

2. load function,

3. convolution operator,

4. result handler,

5. load history, and

6. all postprocessors (as found in the experiment definition).

Figure 4.2 shows the inheritance relation that makes needed-interfaces defined

by PluginIF a subset within the inheriting interfaces. Thus, all plug-ins have to

provide the following functions to implement the PluginIF-interface (ordered in

accord to the calling sequence in the simulation core):

void register parameter() The function register parameter() tells a plug-in

to announce the parameter names it requests from the experiment definition

and the respective addresses for the values in memory. The simulation core

will take care on copying the value that matches the parameter name from the

experiment definition to the given address. Since this is the first function to

be called at a plug-in, the values can be used during initialization (see below).

void register plugins() If a plug-in intends to use the functionality of other

plug-ins, it must call the respective API function within register plugins()

(see listing E.1).

103

E Implementation details

void init() The function init() is intended to allow for resource acquisition,

setting of internal variables, and calculation of constants of a plug-in to achieve

a defined state.

void register output fields() Since the modeling result is stored in an array, a

plug-in can call the respective API functions (see listing E.1) to have CrusDe

allocate enough memory for the results within the function register output fields().

A Green’s function, for instance, will probably want to have memory allocated

for the displacement directions (vertical, horizontalx, and horizontaly). This

interface is currently only called at Green’s functions and postprocessors).

‘run’-functions The ‘run’ functions differ depending on category and are ex-

plained below. However, they are called at this position in the sequence.

void clear() The function clear() is called before unloading of the plug-in to

allow freeing of resources that were allocated during initialization / runtime.

The major difference between the 5 needed plug-in interfaces shown in figure 4.2

is the ‘run’-function which holds the execution functionality, i.e. the purpose of

a plug-in. Some plug-ins need parameters at runtime to fulfill their duty. These

differ among categories. Thus, depending on a plug-ins category different ‘run’-

functionality must be implemented:

void run() Both PluginIF and Data out pluginIF expect plug-ins to provide

functionality via the function run().

double constrain load height(double max load, int x, int y, int t) A load

history plug-in must implement this function of Load history pluginIF and

return a load height that depends on the maximum load, max load, at point

(x,y) at time t.

double get value at(int x, int y, int t) Load pluginIF expects this func-

tion to be implemented by load function plug-ins. The function must return

the load at point (x,y) and time t in the region of interest.

104

E Implementation details

int get value at(double **result, int x, int y, int t) Green pluginIF ex-

pects a Green’s function plug-in to implement this function. It must determine

the Earth’s response at point (x,y) and time t. The result for each spatial di-

mension must be written to the respective index of the array result retrieved

from crusde register output field() (see below).

E.1.2 Provided interfaces: Framework API

The simulation framework does provide an interface which the plug-ins can use

mainly to retrieve information. Many of the needed-interfaces are in a sense comple-

mented by the provided-interfaces. As section E.1.1 showed, many needed-interfaces

simply trigger an action in a plug-in which often results in a response sent via the

API. Listing E.1 gives a full overview of the provided-interfaces. The following list

describes some of the more important API functions:

void crusde register param(double* p, const char* name, PluginCategory cat)

The plug-in of category cat registers the memory address of parameter p with

name name at the simulation framework. The value for name comes from the

experiment definition wherein it must be found with name as identifier.

void crusde register output field(int* position, FieldName f) The plug-

in adds an additional field to the output array. The fields position in the

array is stored at the memory address position is pointing to. The second

parameter denotes whether a spatial (x,y,z) any other field (add) is added.

int crusde get green at(double** result, int x, int y) The value of the Green’s

function at point (x,y) is written to the address of the array result. The size

of result depends on the number of spatial directions the for which Green’s

function calculates values (e.g., vertical, horizontalx, horizontaly).

double crusde get load at(int x, int y, int t) The load at point (x,y) and

time t is returned.

105

E Implementation details

double crusde constrain load height(double max load, int x, int, y, int t)

The load height at point (x,y) and time t depending on the maximum load

max load is computed.

double** crusde get result() Returns a pointer to the array that keeps the con-

volution result.

green exec function crusde request green plugin(char* plugin) Using this

function, any Green’s function plug-in can request a pointer to the ‘run’-

function of the fellow Green’s function that is named plugin. Analog functions

exist for the other plug-in categories.

E.2 Implemented plug-ins: details

E.2.1 Convolution operator: ‘fast 2d convolution’

As mentioned in section 4.3.1 the ‘fast 2d convolution’ plug-in uses version 3 of

the FFTW library to transform its operands to the spectral domain and back. When

using FFTW a basic sequence must be kept (see listing E.2):

• allocate memory for DFT input and output,

• create a plan for the transform,

• execute the plan to perform the DFT (as often as desired), and

• free resources: destroy plan, and free allocated memory.

A plan is an executable data structure that accepts input data and calculates the

respective DFT. The planner, given the size of the input and the data type, au-

tomatically measures the run time of different plans and selects the fastest. This

usually consumes time which can be limited by a flag that indicates how long a user

is willing to wait for a reasonable plan (e.g. FFTW ESTIMATE takes short planning

time). Once we have a plan it can be applied to many data. Thus, sometimes

106

E Implementation details

,
1 void crusde_register_param(double * param ,
2 const char* param_name , PluginCategory);
3 /* register parameter with CrusDe */

4 void crusde_register_output_field(int* position , FieldName);
5 /* register output field with CrusDe */

6

7 int crusde_get_size_x (); /* length of the region of interest */

8 int crusde_get_size_y (); /*width of the region of interest */

9 int crusde_get_size_t (); /*total number of time steps*/

10 int crusde_get_gridsize (); /*side length of a grid cell*/

11 int crusde_get_min_x (); /* westernmost coordinate of ROI*/

12 int crusde_get_min_y (); /* southernmost coordinate of ROI*/

13 int crusde_get_dimensions (); /*total output fields */

14 int crusde_get_displacement_dimensions ();
15 /*total spatial output fields */

16 int crusde_model_time (); /* current time step*/

17 int crusde_stepsize (); /*time increment with each model step*/

18 int crusde_get_x_index (); /*index of x-deform in result array*/

19 int crusde_get_y_index (); /*index of y-deform in result array*/

20 int crusde_get_z_index (); /*index of z-deform in result array*/

21

22 const char* crusde_get_observation_file ();
23 /* filename of points to be observed (unused)*/

24 const char* crusde_get_load_file ();
25 /*file that contains load definition */

26 const char* crusde_get_out_file ();
27 /* filename for result output */

28

29 /*green ’s function coefficients at x,y*/

30 int crusde_get_green_at(double ** res , int x, int y);
31 /*load at x,y,t*/

32 double crusde_get_load_at(int x, int y, int t);
33 /* constrain load h at x,y,t*/

34 double crusde_constrain_load_height(double h, int x, int y, int z);
35

36 void crusde_set_result(double **); /* return pointer to model results */

37 double ** crusde_get_result (); /* pointer to model results */

38 void crusde_set_quadrant(int); /*get/set quadrant in coord. sys...*/

39 int crusde_get_quadrant (); /*where green ’s func. is calculated */

40 void crusde_exit(int exitcode); /*have CrusDe terminate gracefully */

41 boolean crusde_load_history_exists ();
42 /*a load history was defined , returns {true|false}*/

43

44 /* functions to request pointers to the run time function of other

45 plugins of the same category (p is plugin name)*/

46 green_exec_function crusde_request_green_plugin(char* p);
47 load_exec_function crusde_request_load_plugin(char* p);
48 run_function crusde_request_kernel_plugin(char* p);
49 run_function crusde_request_postprocessor_plugin(char* p);
50 loadhistory_exec_function crusde_request_loadhistory_plugin(char* p);

Listing E.1: CrusDe API.

107

E Implementation details

time invested into planning might pay off when extensive reuse of a plan is expected

(Frigo and Johnson, 2005).

The implementation of FFTW’s processing structure in the provided ‘fast 2d

convolution’ plug-in is distributed among the interface functions init(), run(),

and clear():

init() According to the considerations of section 3.6, the init function first cal-

culates a size S for input and output of the fast two-dimensional convolution

that is a power of 2 and large enough to avoid wrap around effects. Following

this, memory for the transform input and output is allocated1. After having

allocated six arrays (input and output for load function, Green’s function and

convolution result, respectively), three plans for a two-dimensional DFT are

created. Two plans to transform load function and Green’s function to the

spectral domain (mapping from the real to the complex plane), and one plan

for the inverse transform of the convolution result (mapping from the complex

to the real plane).

run() The run function iterates over the region that is defined in the experiment

definition and initializes the Green’s function array for each displacement di-

rection the Green’s function plug-in offers (e.g., x, y, z) using the API function

crusde get green at. The load array is initialized at time step 0 using the

API function crusde get load at and then re-calculated every following time

step if a load history function was defined. For each displacement direction a

convolution result is obtained by:

• executing the DFT,

• complex multiplication of the transform results in the spectral domain,

and

• execution of an inverse DFT to transform the result to the original do-

main.

1 FFTW expects input arrays to be one-dimensional. Higher dimensionality is to be realized
via offsets. For instance, to retrieve the value of the (i,j,k)-th element of an array M of size
I × J ×K, the expression M [k + K ∗ (j + J ∗ i)] would be used.

108

E Implementation details

,
1 #include <fftw3.h>
2 #include <complex.h>
3 /* use fftw_allocate if memory is allocated dynamically */

4 double load_in[S], green_in[S], conv_out[S];
5 fftw_complex load_out[S], green_out[S], conv_in[S];
6 fftw_plan plan_load , plan_green , plan_conv;
7 int i = -1;
8

9 /* plan real to complex 2- dimensional DFT */

10 plan_load = fftw_plan_dft_r2c_2d (S_x , S_y , load_in ,
11 load_out ,
12 FFTW_ESTIMATE);
13

14 plan_green = fftw_plan_dft_r2c_2d (S_x , S_y , green_in ,
15 green_out ,
16 FFTW_ESTIMATE);
17

18 /* plan a complex to real inverse transform */

19 plan_conv = fftw_plan_dft_c2r_2d (S_x , S_y , conv_in ,
20 conv_out ,
21 FFTW_ESTIMATE);
22

23 /* Initialize green_in and load_in with data ... */

24

25 fftw_execute(plan_load); /* compute load DFT */

26 fftw_execute(plan_green); /* compute green DFT */

27

28 /* point -wise complex multiplication and normalization */

29 while (++i < S){
30 conv_in[i] = (green_out[i] * load_out[i]) / S;
31 }
32

33 /* inverse DFT , conv_out now holds the result */

34 fftw_execute(plan_conv);
35

36 /*free ressources */

37 fftw_destroy_plan(plan_load); /* use fftw_free to free */

38 fftw_destroy_plan(plan_green); /* memory allocated with */

39 fftw_destroy_plan(plan_conv); /* fftw_allocate */

Listing E.2: Example showing how a fast convolution could be implemented using FFTW

109

E Implementation details

Invoking the API function crusde set result the ‘fast 2d convolution’

plug-in notifies the simulation core about the memory address of the con-

volution result.

clear() This function destroys all plans created during initialization and frees all

other memory allocated upon initialization.

E.2.2 Green’s functions

elastic halfspace (pinel)

In this plug-ins init() function constant parts of the Green’s functions are calcu-

lated to minimize the number of operations at runtime. The get value at function

computes the value of the Green’s function at point (x, y) which is converted to

cylindrical coordinates before computation. The result, however, is in Cartesian

coordinates (see appendix E.2.4).

thick plate (pinel)

In the implementation of the function request plugins this plug-in asks the simu-

lation core to load the ‘elastic halfspace (pinel)’ plug-in and return a pointer

to its get value at function.

Apart from initialization of constants the init function also prepares the inte-

gral functions and the integration workspace of the GNU Scientific Library2 (GSL)

(Galassi et al., 2007). The GSL is used to compute the integrals contained in equa-

tions 3.7 and 3.8 numerically (using the function gsl integration qag). The im-

plementations of the Bessel functions provided by the GSL are used within this

plug-in as well. Since the hyperbolic functions are strictly monotonic increasing and

quickly approach infinity, the bounds of the integral must be confined. Pinel (pers.

comm., 2007) observed that the integrals of equation 3.7 and 3.8 show convergent

behavior for values smaller than the onset of the trend towards infinity of the hy-

perbolic functions. The integral interval is thus confined to [0, 0.003]. Using this

2 http://www.gnu.org/software/gsl/

110

E Implementation details

interval solutions can be obtained for realistic parameter settings (e.g., H <= 50 km,

an unrealistically thick crust would again lead to terms of infinity). This approach

underestimates the values for the Green’s function.

The get value at function invokes the plug-in for the elastic half-space which

returns a result just as if it was the main Green’s function plug-in. To this value

the product of constants and the integral function is added to obtain a value for the

implemented Green’s functions at point (x, y).

E.2.3 Load functions and load history functions

disk load

The ‘disk load’ plug-in defines a uniformly distributed load in the shape of a disk.

Parameters that define center, radius, and height of the disk have to be defined

in the experiment definition (see listing D.1). The implementation of the function

get value at checks whether the Euclidian distance of point (x,y) to the center of

the disk is smaller than the disks radius. If so, the load for that point is returned;

zero otherwise. The load height might, however, be constrained by a load history if

defined.

irregular load

The ‘irregular load’ plug-in differs from the disk load mainly in that it reads

the load heights from a separate load file during processing of the init function.

The respective load file must be defined in the experiment definition (see listing 5.1)

and is expected to be in a tabular format with three columns separated by spaces;

rows contain only numbers. The values of a row are interpreted as:

Longitude Latitude Height

Longitude and latitude are expected to be integers in Lambert coordinates. The

heights (double values) read from the file are stored in an array that represents the

examined area. Points not found in the load file are initialized to a height of 0.0.

When the function get value at is invoked, the load height of the requested point

111

E Implementation details

(mapped to the array) is returned and might be constrained by a load history if

defined.

sinusoidal

The ‘sinusoidal’ plug-in defines a simple load history that alternates in the form of

a cosine. The plug-ins function constrain load height implements the following

formal model for a load history (Grapenthin et al., 2006):

h(~r′, t) =
hm

2

[
1 + cos(

2π

p
(t− thm))

]
(E.1)

The load, h(~r′, t), varies as a harmonic function of time (t) at each point (~r′). hm

is the maximum load height which is a parameter of constrain load height. The

length of the cosines period is influenced by p. If, for instance, a period of one year

is desired and t represents days, then p = 365. Phase shifting of the cosine enables

a control of the time when the load reaches its maximum (thm). Thus, p and thm are

parameters to be defined in the experiment definition.

E.2.4 Postprocessors

The two implemented postprocessors call crusde register output field to have

the simulation core allocate memory for their results.

xy2r

The ‘xy2r’ postprocessor plug-in converts the convolution results that are obtained

in Cartesian coordinates to cylindrical coordinates. The conversion is implemented

in its run function (e.g., Bronstein et al. (2001)):

Uh(~r) =
√

Uh(x)2 + Uh(y)2 (E.2)

The horizontal surface displacement in cylindrical coordinates is then stored at the

position in the result array that was obtained by calling crusde register output field.

112

E Implementation details

hori2vert-ratio

This plug-in calculates the ratio between horizontal and vertical surface displace-

ments:

k =

√
Uh(x)2 + Uh(y)2

Uv(x, y)
(E.3)

with k being the ratio. The values for k are also stored at the position obtained

upon registration of an output field.

E.2.5 Result handler

Figure 4.2 depicts that plug-ins of the result handler category implement the Data

out pluginIF. It is their responsibility to assure that model results are written to

persistent memory (or in some other way made available to the outside world).

table writer

This result handler plug-in writes the model results in tabular form to a text file. Its

implementation of the run function composes one line for each point of the examined

area in the format:

time x-coord y-coord [U_x] [U_y] [U_v] [add_1...add_k]

The terms in brackets are, in a way, optional. The existence of the particular

displacements depends on whether the Green’s function calculates them. Thus,

horizontal deformation (U_x,U_y) can be missing while vertical deformation (U_v)

ends up at the position in the output table that succeeds the y-coord. However,

the output file contains header information that shows which deformation fields are

at which position. The semantics of the additional result fields (add i) depend

on the order of the (post-processor) plug-in definition in the experiment definition.

Momentarily, the header information is quite sparse about this.

netcdf writer

All information that complements the description given in section 4.3.1, e.g., variable

naming, is found in CrusDe’s documentation (on the enclosed CD).

113

E Implementation details

E.3 Implementing a new plug-in

A guide to implement a new plug-in for CrusDe is the template file

crusde/plugin src/temp plugin.c.tmp.

There, all the functions that implement the PluginIF-interface are defined and

commented to explain the semantics of each of the functions.

Most important when implementing a new plug-in is the inclusion of the file

crusde api.h which provides access to CrusDe’s API (see listing E.1).

Once the plug-in is written it must be compiled and a shared library must be

created. A simple approach is to copy the source file into the respective subdirectory

of the directory crusde/plugin src that denotes the plug-ins category and then

type:

$> make all

All source files (*.c) in this directory will be compiled and shared libraries with the

names <source-filename>.so are created.

If the provided makefile is not used, the sources must be compiled with the

-fpic or -fPIC flag for ‘position independent code’ generation which is necessary

when creating shared libraries. If the source code for the new plug-in is saved to the

file plugin.c:

$> gcc -fPIC -c -Wall plugin.c

The -c parameter tells the compiler to create an object file (plugin.o).

To create the shared library from the object file, the -shared flag must be set

for the linker:

$> gcc -shared -o plugin.so plugin.o -lc

The -lc parameter links the object file plugin.o against the C standard library.

Once the plug-in is created it can be added to CrusDe using the plug-in

manager (see appendix D.2).

114

Index

analysis objective, 23

category, 44
component, 12
composable simulation model, 14
convolution, 35

fast, 35, 36
theorem, 38

DFT, 36

Earth-load-system, 22
effective Young’s modulus, 33
elastic material, 32
event, 10

filter, 27

Green’s function, 29

half-space, 32

interface, 12
needed, 102
provided, 102

KISS principle, 8, 43

lithosphere, 25
load, 22

history, 22
loading problem, 23

model, 7
class, 7, 24
composable simulation m., 12
conceptual, 10
declarative, 10
formal, 11
functional, 10

modeling, 7
inverse problem, 23

plug-in, 8, 47
Poisson’s ratio, 32

response function, 28
reuse, 14

signal, 28
simulation, 7

composable s. model, 12
continuous, 9
discrete, 9
even driven, 10
framework, 8, 13
time-stepped, 9

simulation model, 7
composable, 8
paradigms, 9

simulator, 8
software

component, 12
software component

category, 44
instance, 12

spectrum, 28, 36
system, 7, 22

Earth-load-̃, 22
elements, 8, 22
linear space-invariant, 29

test, 18

validation, 18
verification, 18

Young’s modulus, 93

115

Erklärung

Ich erkläre, diese Diplomarbeit selbstständig und nur unter Verwendung der angegebe-

nen Literatur und Hilfsmittel angefertigt zu haben.

Ich bin damit einverstanden, dass ein Exemplar dieser Arbeit in der Bibliothek des

Instituts für Informatik der Humboldt-Universität zu Berlin ausgestellt wird.

Berlin, den July 31, 2007 .

	List of Figures
	Listings
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Motivation & scientific context
	1.2 Objectives and contribution
	1.3 Structure of this thesis

	2 Modeling and simulation
	2.1 Disambiguation
	2.2 Simulation model paradigms
	2.3 Computer simulation and problem solution
	2.4 The composable simulation model
	2.5 Verification, validation, and testing
	2.6 Summary

	3 Examining the deformation of the Earth's crust
	3.1 System description & conceptual model
	3.2 The Earth's inner structure
	3.3 The lithosphere from a signal processing point of view
	3.4 Green's functions as a load response function
	3.5 Applying Green's method: formal models for surface displacement
	3.5.1 Elastic half-space
	3.5.2 Thick plate over an inviscid fluid

	3.6 Performance enhancement: fast convolution
	3.6.1 Theoretical background
	3.6.2 Convolving a Green's function and a load fast

	3.7 Summary

	4 The composable simulation model: A plug-in based simulation framework
	4.1 Specification of the simulation framework
	4.2 Architecture
	4.3 Implementation
	4.3.1 Selected plug-ins
	4.3.2 Plug-ins in Unix environments
	4.3.3 Experiment files

	4.4 Runtime scenarios
	4.4.1 UML sequence diagrams
	4.4.2 Plug-in communication sequence
	4.4.3 Initialization sequence
	4.4.4 Execution sequence

	4.5 Testing and validation
	4.6 Evaluation of the plug-in based simulation framework
	4.7 Summary

	5 Case study: The Hekla 2000 lava
	5.1 Introduction
	5.2 The study site: Experiment definition
	5.3 Model results
	5.3.1 Instantaneous and final relaxed deformation due to the Hekla 2000 lava
	5.3.2 Modeling a magma chamber: The Mogi model
	5.3.3 Response of a deflating magma chamber vs. final relaxed response to a disk load

	5.4 Discussion & conclusions
	5.5 Summary

	6 Summary, conclusions & outlook
	Bibliography
	A Symbols
	B Contents of the CD
	C Installation and simulation
	D Sample experiment & use cases
	D.1 Experiment definition
	D.2 Using the plug-in manager
	D.3 Using the experiment manager

	E Implementation details
	E.1 Interfaces of the simulation framework
	E.1.1 Needed interfaces
	E.1.2 Provided interfaces: Framework API

	E.2 Implemented plug-ins: details
	E.2.1 Convolution operator: `fast 2d convolution'
	E.2.2 Green's functions
	E.2.3 Load functions and load history functions
	E.2.4 Postprocessors
	E.2.5 Result handler

	E.3 Implementing a new plug-in

	Index

