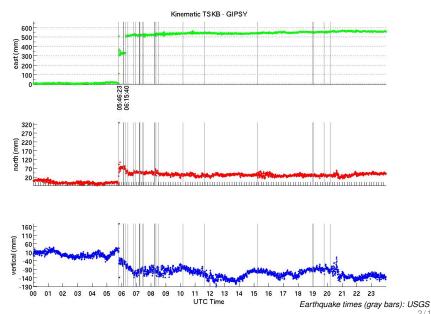
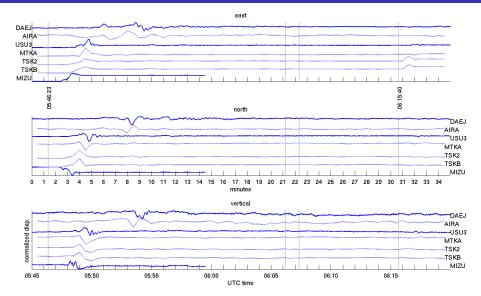
Tracking Earthquakes in 4D: The 2011 Tohoku-oki Event, Japan

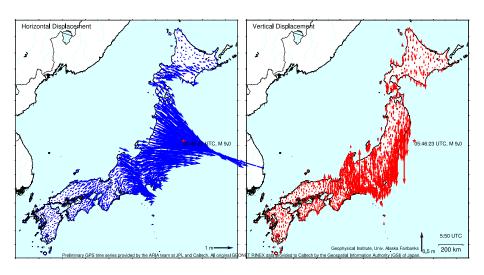
Ronni Grapenthin Jeffrey Freymueller

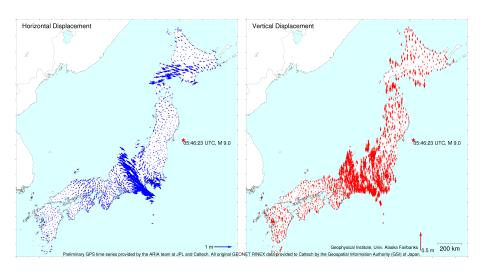
Geophysical Institute, Univ. of Alaska Fairbanks, USA.

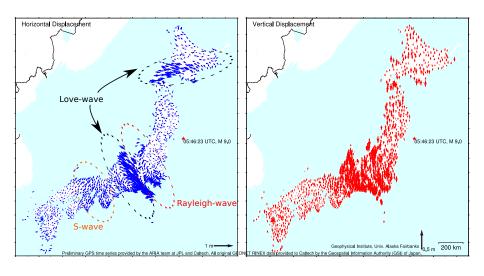

Special thanks to: Team ARIA (JPL/Caltech), and L.Meng, JP Ampuero (Caltech)

-Real-time GPS for Seismology and other Applications-May 17, 2011


IGS station TSKB/2: 30 s solutions


Setting the stage: Japan


IGS station waveforms, sorted by distance from epicenter


05:50 UTC (5 min solutions, ARIA)

05:50-05:55 UTC: dynamic feature

05:50-05:55 UTC: dynamic feature edited

30 s solutions (ARIA)

Movie of 30 s solutions

http://gps.alaska.edu/ronni/sendai2011.html

Acknowledgements: Preliminary GPS time series provided by the ARIA team at JPL and Caltech. All original GEONET RINEX data provided to Caltech by the Geospatial Information Authority (GSI) of Japan.

1 s solutions (GPS Solutions)

Movie 1 s solution

http://gps.alaska.edu/ronni/sendai2011.html

Acknowledgements:

- Geospatial Information Authority, Japan: operate GEONET
- NGDS (Nippon GPS Data Service, Japan): provide Real-time 1Hz data
- Hitz (Hitachi Zosen Co., Japan), GPSS (GPS Solutions, Boulder, CO, USA): RTNet software
- VERIPOS: Provide GPS satellite clock/orbit based on global network with real-time

1 s solutions (GPS Solutions) + back-projection

Movie 1 s solution not yet published

Acknowledgements: Seismic back-projection: Lingsen Meng and Jean-Paul Ampuero, Caltech.

Major observations

- permanent displacements (arrive with s-waves/surface waves):
 - narrow band of subsidence suggests large tsunami
 - horizontal points to source region
 - maximum at about 157 s after rupture initiation
 - final permanent field at about 217 s

Major observations

- permanent displacements (arrive with s-waves/surface waves):
 - narrow band of subsidence suggests large tsunami
 - horizontal points to source region
 - maximum at about 157 s after rupture initiation
 - final permanent field at about 217 s
- tracking of S-waves:
 - radiate outwards at apparent velocity of 6-8 km/s
 - swath about 160 km wide
 - takes about 20-27 s to pass
 - 4:30-5:00 min to traverse Japan (surface waves took about 8:30-9:00 min)

Conclusions/Suggestions

 data dissemination: How do data formats/archiving affect (immediate) event response?

Conclusions/Suggestions

- data dissemination: How do data formats/archiving affect (immediate) event response?
- move to vectors for visualization of dense (real time) high rate data (monitoring):
 - preserves spatial relations of data
 - separate site specific noise from spatially correlated signal (image filtering)
 - invaluable outreach tool

Conclusions/Suggestions

- data dissemination: How do data formats/archiving affect (immediate) event response?
- move to vectors for visualization of dense (real time) high rate data (monitoring):
 - preserves spatial relations of data
 - separate site specific noise from spatially correlated signal (image filtering)
 - invaluable outreach tool
- real time maps for rapid damage assessment (emergency response):
 - co-seismic displacements give a good first order estimate of maximum damage
 - track S-wave magnitudes and scale with factors such as soil composition, building code, etc.

Conclusions/Suggestions 2/2

- tool in early warning:
 - warn places before S-wave arrives ([virtual] self organizing network [Fleming et al., Seis. Res. Lett., 2009]); predict time, duration of shaking
 - near real time visualization of GPS displacements would provide an immediate visual and quantitative indication of earthquake size
 - coorperate with seismologists to integrate real-time 3D displacements in determination of locations, damage control.
 - displacements input to tsunami forecast models / tsunami warning